Answer:
I think the answer is c!
Explanation:
Pure substances are further broken down into elements and compounds. Mixtures are physically combined structures that can be separated into their original components. A chemical substance is composed of one type of atom or molecule. hope this helps you!
<u>Given:</u>
Moles of Al = 0.4
Moles of O2 = 0.4
<u>To determine:</u>
Moles of Al2O3 produced
<u>Explanation:</u>
4Al + 3O2 → 2Al2O3
Based on the reaction stoichiometry:
4 moles of Al produces 2 moles of Al2O3
Therefore, 0.4 moles of Al will produce:
0.4 moles Al * 2 moles Al2O3/4 moles Al = 0.2 moles Al2O3
Similarly;
3 moles O2 produces 2 moles Al2O3
0.4 moles of O2 will yield: 0.4 *2/3 = 0.267 moles
Thus Al will be the limiting reactant.
Ans: Maximum moles of Al2O3 = 0.2 moles
The deforestation of tropical rainforest trees to create farms and pastures, and to harvest trees for construction has increased soil erosion.
<h3>WHAT IS DEFORESTATION:</h3>
- Deforestation is the process whereby trees are cut down for commercial purposes e.g. lumbering for paper production.
- Rainforest is a vegetation characterized by trees and shrubs. However, these trees serve as soil cover and help prevent soil erosion.
This means that deforestation of tropical rainforest trees to create farms and pastures, and to harvest trees for construction has increased soil erosion
Learn more about deforestation at: brainly.com/question/11697527
Answer:

Explanation:
Hello!
In this case, since the study of the bond energy allows us to compute the enthalpies of some reactions, for this combination reaction by which ammonia is yielded, we understand the enthalpy of reaction equals the enthalpy of formation of ammonia, and, in terms of the bonds energy we can write:

Whereas the bonds enthalpy of those bonds that get broken cover the N≡N and the three H-H bonds at the reactants side and the enthalpy of those bonds that are formed cover the six N-H bonds at the products; which means we obtain:

Which differs from the theoretical value that is -46 kJ/mol.
Best regards!