Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
Answer:
See explanation
Explanation:
A balanced chemical reaction equation has the same number of atoms of each element on both sides of the reaction equation.
Hence, for the reaction between KOH and H2SO4, the balanced chemical reaction equation is;
H2SO4(aq) + 2KOH(aq) ---------> K2SO4(aq) + 2H2O(l)
Complete ionic equation;
2H^+(aq) + SO4^2-(aq) + 2K^+(aq) +2OH^-(aq) -------> SO4^2-(aq) + 2K^+(aq) + 2H2O(l)
Net ionic equation;
2H^+(aq) + 2OH^-(aq) -------> 2H2O(l)
Answer:
C- A proton has about the same mass as a neutron .
Explanation:
In an atom such as a carbon atom, the masses of the proton and neutrons are the same.
The mass of the electrons is very negligible.
- Protons are the positively charged particles in an atom
- Neutrons do not carry any charges
- Both protons and neutrons have similar masses.
- They contribute the bulk of the mass of the atom.
- The electrons carry negative charges and they have negligible masses.
The mass of protons and neutrons are similar.
Answer:
Explanation:
3.
Knowns: 100mL of solution; concentration of 0.7M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 100/1000 * 0.7 = 0.07 mole
Final Answer: 0.07mole
2.
Knowns: 5.50L of solution; concentration of 0.400M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 5.5 * 0.4 = 2.20 mole
Final Answer: 2.20 mole
Answer:
392g sulfuric acid are produced
Explanation:
Based on the balanced equation:
2HCl + Na2SO4 → 2NaCl + H2SO4
<em>2 moles of HCl produce 1 mole of sulfuric acid</em>
<em />
To solve the problem we need to find the moles of sulfuric acid produced based on the chemical equation. Then, using its molar mass -<em>Molar mass H2SO4 = 98g/mol- </em>we can find the mass of sulfuric acid produced:
<em>Moles sulfuric acid:</em>
8mol HCl * (1mol H2SO4 / 2mol HCl) = 4 mol H2SO4
<em>Mass sulfuric acid:</em>
4mol H2SO4 * (98g / mol) =
392g sulfuric acid are produced