Answer :
The complete equation for the reaction of sulfuric acid and sugar is,

By the stoichiometry of the reaction,
1 mole of sucrose react with the 11 moles of sulfuric acid to give 12 moles of carbon and 11 moles of water.
In this reaction, sulfuric acid react with sucrose (sugar). It dehydrates the sugar molecules which means it eliminates the water.
Hi!
The correct option would be A.
This is because the displacement reaction would take place as follows
Ca + ZnCl2 --> CaCl2 + Zn
A displacement reaction is one in which a substitution occurs, as the more reactive element in the mixture replaces one that is less reactive.
In the electrochemical series, we find Ca higher than Zn, which is indicative of Ca being more reactive, and having the capacity to displace Zn to form a compound.
Option D would be incorrect as no such substitution occurs.
Option B would be incorrect because again, there is no substitution occurring, and also because two metals alone (Ca and Zn in our case) can never react to form a compound.
Option C would be incorrect because it is not possible because CaCl and ZnCl are forms that are too unstable to exist due to an overall positive charge.
Hope this helps!
Answer:
Follows are the solution to the given question:
Explanation:
Dry Soil weight = solid soil weight = 
solid soil volume =
saturated mass soil = 
The weight of the soil after drainage is =
Water weight for soil saturation = 
Water volume required for soil saturation =
Sample volume of water: 

Soil water retained volume = (draining field weight - dry soil weight)



(Its saturated water volume is equal to the volume of voids)




AgF consists of Ag+ and F- ions, which are fully dissociated in aqueous solution. When solving electrolysis problems, it is important to remember that water itself may also be a subject to electrolysis. Therefore, determining which species is oxidized and which species is reduced depends on selecting the processes that are the most energetically favorable. The most preferred reduction reaction will be Ag+ + e- = Ag (Emf=0.7996 V) which will occur at the cathode, on the other hand, the most favorable oxidation reaction will be
2H2O = O2 +4H+ + 4e- (Emf = -1.3 V) that will occur at the anode. Thus, the product at the anode is oxygen gas and at the cathode electrode is silver metal.
Answer : The amount of heat evolved by a reaction is, 4.81 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the water
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water = 254 g
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(783J/^oC\times -2.28^oC)+(254g\times 4.184J/g^oC\times -2.28^oC)]](https://tex.z-dn.net/?f=q%3D%5B%28783J%2F%5EoC%5Ctimes%20-2.28%5EoC%29%2B%28254g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20-2.28%5EoC%29%5D)

Therefore, the amount of heat evolved by a reaction is, 4.81 kJ