Solubility at 100 °C = 480 g / 100 mL of solution =: saturated solution
The proportion 240 g / 50 mL is equal to the saturated ratio 480 g / 100 mL
Then, 240 g of sugar in 50 mL of boiling water will make a saturated solution.
Answer: saturated
Answer:
Hydrogen(H) and Heluim(He)
Explanation:
These are the only two valennce electrons and 1 energy levels.
Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l
Explanation:
The word equation for the burning of a candle is wax plus oxygen yields carbon dioxide and water. This is an exothermic reaction that produces both light and heat.
The fuel for a burning candle is the wax. There are many different types of wax with a corresponding number of chemical formulas, but they are all hydrocarbons. Hydrocarbons are molecules made from hydrogen and carbon.
Burning the wax pulls the hydrogen and carbon in the wax apart and recombines them with oxygen from the atmosphere. This is an oxidation reaction. The resulting carbon dioxide and water are gases that disperse in the air.
follow me