Answer:
The value is 
Explanation:
From the question we are told that
The weight of the horizontal solid disk is
The radius of the horizontal solid disk is
The force applied by the child is
The time considered is 
Generally the mass of the horizontal solid disk is mathematically represented as

=> 
=> 
Generally the moment of inertia of the horizontal solid disk is mathematically represented as

=>
=> 
Generally the net torque experienced by the horizontal solid disk is mathematically represented as

=> 
=> 
=> 
Gnerally from kinematic equation we have that

Here
is the initial angular velocity velocity of the horizontal solid disk which is 
So

=>
Generally the kinetic energy is mathematically represented as

=> 
=> 
The net force on the block perpendicular to the floor is
∑ F[perp] = F[normal] - mg = 0
so that
F[normal] = (5 kg) g = 49 N
Then
F[friction] = 0.1 F[normal] = 4.9 N
so that the net force parallel to the floor is
∑ F[para] = -4.9 N = (5 kg) a
Solve for the acceleration a :
a = (-4.9 N) / (5 kg) = -0.98 m/s²
Starting with an initial velocity of 5 m/s, the box comes to a stop after time t such that
0 = 5 m/s - (0.98 m/s²) t
⇒ t ≈ 5.1 s
Answer:
1.) Waves carry energy through empty space or through a medium without transporting matter. While all waves can transmit energy through a medium, certain waves can also transmit energy through empty space. ... When waves travel through a medium, the particles of the medium are not carried along with the wave.
2.) Mechanical Waves are waves which propagate through a material medium (solid, liquid, or gas) at a wave speed which depends on the elastic and inertial properties of that medium. There are two basic types of wave motion for mechanical waves: longitudinal waves and transverse waves. Longitudinal waves vibrating in the direction of propagation while Transverse waves vibrate at right angles to the direction of its propagation.
3.) They can carry a little energy or a lot of energy. They can be transverse or longitudinal. However, all waves have common properties—amplitude, wavelength, frequency, and speed. Amplitude describes how far the medium in a wave moves.
I hope this helps!
The correct answer is 432, and 720.
The thickness of a film is t= 360nm
the refractive index of oil n₀t = (m +1/2) λ
For m =0
λ = 4n₀t
= 4(1.50)(360)
= 2160nm
for m = 1
λ = 4n₀t
= 4(1.50)(360)/3
= 720nm
m = 2
λ = 4n₀t/5 = 4(1.50)(360)/5
= 432nm
The wavelength which are most strongly reflected are
432nm, 720nm.