Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
The heat from your hand causes the ice molecules to heat up and become more active. This lowers the stability of the ice cube compound causing it to melt.
Answer:

Explanation:
Given that
, we use Kirchhoff's 2nd Law to determine the sum of voltage drop as:

#To find the particular solution:

Hence the charge at any time, t is 
Answer:
The answer is 4 pounds
Explanation:
The explanation is that 1 kilogram is equal to 2 pounds so multiply the kilogram with the 1 pound
That's the cool thing about free fall. The amount of time it takes to fall remains the same.
In this case, a ball that is simply dropped from rest will fall at the same rate as a ball that had some umph in the horizontal direction.