ThIs is the same type of problem
find out the time value
3 = 1/2*a*T^2
6/10 = t^2
t = 0.77 seconds
and the distance is given 5 m
thus speed ,= distance/time
speed = 5/0.77
= 6.45 m/s
Answer:
26.6 m/s
Explanation:
Given:
Δy = 2.1 m
t = 5.35 s
a = -9.8 m/s²
Find: v₀
Δy = v₀ t + ½ at²
(2.1 m) = v₀ (5.35 s) + ½ (-9.8 m/s²) (5.35 s)²
v₀ = 26.6 m/s
Answer:
The correct answer is:
(a) 84.240 kg
(b) 24.038 m
Explanation:
The given values are:
Force,
F = 81.0 N
Distance,
S = 13.0 m
Time,
t = 5.20 s
As we know,
The acceleration of mass will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
(a)
The mass of the block will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
(b)
The final velocity after a given time i.e.,
t = 5.00 s
⇒ 
On substituting the values, we get
⇒ 
⇒ 
In time, t = 5.00 s
The distance moved by the block will be:
⇒ 
On putting the values, we get
⇒ 
⇒ 
Answer:
estan relacionadas por una R XD
Explanation:
Answer: Option (B) is the correct answer.
Explanation:
In a solid, molecules are held together by strong intermolecular forces of attraction. As a result, they are unable to move from their initial place but they can vibrate at their mean position.
Hence, in solid substances the molecules have low kinetic energy.
Whereas in liquids, the molecules are held by less strong intermolecular forces of attraction as compared to solids. Due to which they are able to slide past each other. Hence, they have medium kinetic energy.
In gases, the molecules are held by weak Vander waal forces. Hence, they have high kinetic energy due to which they move rapidly from one place to another leading to more number of collisions.
Hence, gases are able to expand more rapidly as compared to liquids.
Thus, we can conclude that out of the given options solid = low; liquid = medium; gas = high, combination of the state of matter and the corresponding dryer speed is correct.