Answer:
The strength of the magnetic field is
.
Explanation:
Given that,
Length of the rod, L = 1.01 m
Speed with which the rod is moving, v = 3.47 m/s
We need to find the strength of the magnetic field that is perpendicular to both the rod and your direction of motion and that induces an EMF of 0.265 mV across the rod. When the rod is moving with some speed, an emf gets induced and it is given by :

B is magnetic field

So, the strength of the magnetic field is
.
Answer:
<h2>82.94 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 28.8 × 2.88 = 82.944
We have the final answer as
<h3>82.94 N</h3>
Hope this helps you
'Doing work' is a way of transferring energy from one object to another, energy is transferred when a force moves through a distance.
If i explain with formula
Work done (J) = Energy transferred (J)
So more energy, more work done bc u transferred more energy to move the object and doing the work. and if you only use a little of energy, the work done also only a little.
True ! Examples: brighter, refreshing, easy, fine, firm, satisfying.
Answer:
787528.7 J
Explanation:
Work done: This can be defined as the product of force and distance along the direction of force. The S.I unit of work is Joules (J).
From the question,
W = Tcos∅(d)............. Equation 1
Where W = work done, T = tension in the rope, ∅ = the angle of the rope to the horizontal, d = distance.
But,
d = v(t)..................... equation 2
Where v = velocity, t = time
Substitute equation 2 into equation 1
W = Tcos∅(vt)............. Equation 3
Given: T = 210 N, ∅ = 23°, v = 7 km/h = 1.94 m/s, t = 35 min = 2100 s
Substitute into equation 3
W = 210(cos23°)(1.94×2100)
W = 787528.7 J