Answer:
35.28m/s; 63.50m
Explanation:
<u>Given the following data;</u>
Time, t = 3.6 secs
Since it's a free fall, acceleration due to gravity = 9.8m/s²
Initial velocity, u = 0
To find the final velocity, we would use the first equation of motion;
Substituting into the equation, we have;
V = 35.28m/s
Therefore, the final velocity of the penny is 35.28m/s.
To find the height, we would use the second equation of motion;

Substituting the values into the equation;



S = 63.50m
Therefore, the height of the tower is 63.50m.
Answer: chicken hope this helps!
Explanation:
I’m not sure but I think it’s
△ m=5 and △= -3 and so
Answer: 5/△-3 m/s
So sorry if it’s wrong
The conclusion is, medium Q is most likely a solid because solids have the highest density and sound waves travel fastest in high density media.
<h3>
Effect of density on speed of sound</h3>
Sound wave is mechanical wave that requires material medium for its propagation.
A high dense medium, is a medium with closely packed molecules. Since sound wave requires material medium for its propagation, it will travel faster in a high dense medium than a less dense medium.
Thus, the speed of sound increases as the density of the medium increases.
<h3>Speed of sound in the different media</h3>
The conclusion that can be made from the speed of sound in the different media is "Medium Q is most likely a solid because solids have the highest density and sound waves travel fastest in high density media".
Learn more about effect of density on speed of sound here: brainly.com/question/3323620
Explanation:
The given data is as follows.
radius (r) = 3.25 cm, 
Now, we will calculate the tangential acceleration as follows.

Putting the given values into the above formula as follows.

= 
= 37.7 
Thus, we can conclude that the tangential acceleration of a point on the rim of the flywheel during this spin-up process is 37.7
.