g will be equal to 9.775, f=mg
So m= f/g
=99.95
Stems and leaves is the answer. Jessica you are in my class right ?
Answer:
Average :
UCL = 4.15
LCL = 2.65
Range :
UCL = 2.75
LCL = 0
Explanation:
Given :
Sample size, n = 5
Average, X = 3.4
Range, R = 1.3
A2 for n = 5 ; equals 0.577 ( X chart table)
For the average :
Upper Control Limit (UCL) :
X + A2*R
3.4 + 0.577(1.3) = 4.1501
Lower Control Limit (LCL) :
X - A2*R
3.4 - 0.577(1.3) = 2.6499
FOR the range :
Upper Control Limit (UCL) :
UCL = D4*R
D4 for n = 5 ; equals = 2.114
UCL = 2.114*1.3 = 2.7482
Lower Control Limit (LCL) :
LCL = D3*R
D3 for n = 5 ; equals = 0
LCL = 0 * 1.3 = 0
Answer:
The energy absorbed by a hydrogen atom is 1.549 X10⁻¹⁹ J
Explanation:
Using Bohr's equation; the energy absorbed by the hydrogen atom can be calculated as follows:

When an electron moves from a lower energy level to a higher energy level, energy is absorbed by the atom.
Lower energy level (n₂) = 3
Higher energy level (n₁) = 5
1 eV = 1.602X10⁻¹⁹ C

ΔE = 1.549 X10⁻¹⁹J
The energy absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 is 1.549 X10⁻¹⁹ J
The atoms of some materials have no free electrons in their outer orbits. These electrons are busy doing other jobs, like being shared in the orbits of two adjacent atoms. They are so closely held that it is very difficult to pull them away. Most compounds of carbon and hydrogen are like this.
<span>Plastics, whose molecules are made from long combinations of carbon and hydrogen atoms, have few or no free electrons. This means that plastics are poor conductors of electricity (and they are also poor conductors of heat). hope that helped.</span>