Answer:
THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.
Explanation:
The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.
Answer:
a) <em>8.33 x 10^-6 Pa</em>
b) <em>8.23 x 10^-11 atm</em>
c) <em>1.67 x 10^-5 Pa</em>
d) <em>1.65 x 10^-10 atm</em>
<em></em>
Explanation:
Intensity of the light
= 2500 W/m^2
speed of light
<u> </u>= 3 x 10^8 m/s
a) we know that the pressure for for a totally absorbing surface is given as
=
= 2500/(3 x 10^8) = <em>8.33 x 10^-6 Pa</em>
b) 1 atm = 101325 Pa
= (8.33 x 10^-6)/101325 = <em>8.23 x 10^-11 atm</em>
c) for a totally reflecting surface
=
= twice the value for totally absorbing
= 2 x 8.33 x 10^-6 = <em>1.67 x 10^-5 Pa</em>
d) 1 atm = 101325 Pa
= 2 x 8.23 x 10^-11 = <em>1.65 x 10^-10 atm</em>
The answer would be red giants and supergiants
From the calculation, the speed of sound at 10 K is 63.5 m/s.
<h3>What is the speed of sound?</h3>
We know that the speed of sound is directly proportional to the temperature of the body thus we can write;
V1/V2 = √T1/T2
Then;
T1 = 0 degrees or 273 K
T2 = 10 K
V1 = 330 m/s
V2 = ?
330/T2 = √273/10
330/T2 = 5.2
330 = 5.2T2
V2 = 330/5.2
V2 = 63.5 m/s
Learn more about speed of sound:brainly.com/question/15381147
#SPJ1