Answer:
Reverse the
reaction
Explanation:
Reactions:

Overall:

As can be seen, in the overall reaction we have
in the reactants like in the second reaction and
in the products. The
is in the first reaction but as a reactant so we need to reverse that reaction:

Combining:


So to solve this you need to know Charles’s law which is: V1/T1=V2/T2. Where T1 and V1 is the initial volume and Temperature and V2 and T2 is the temperature and volume afterwards. So first plug in the numbers you are given. V1= 1.55L T1= 32C° V2= 755mL T2=?. Since your volumes are two different units you change 755mL to be in L so that would be 0.755 L. And since your temp isn’t in Kelvin you do 273+32= 305K°. You then would rearrange your equation to solve for T2 which is V2T1/V1. Then you plug in your numbers (0.755L)(305K)/1.55L. Then you solve and would be 148.5645161 —> 1.49 x 10^2 K
According to Boyle's law, if the temperature were tripled as the number of moles and the volume were held constant, the pressure would triple (option C).
<h3>What is Boyle's law?</h3>
Boyle's law is the observation that the pressure of an ideal gas is inversely proportional to its volume at constant temperature.
However, when the temperature of a gas is increased, the pressure of the gas also increases provided the volume is constant.
According to this question, the temperature of a gas tripled as the number of moles and the volume were held constant.
Therefore, according to Boyle's law, if the temperature were tripled as the number of moles and the volume were held constant, the pressure would triple.
Learn more about Boyle's law at: brainly.com/question/1437490
#SPJ1
The recrystallization solvent ought to have a genuinely low breaking point since it makes it simpler for the solvent to vanish out when the arrangement air drys.The breaking point ought to be bring down the softening purpose of the compound.If the breaking point is bigger than the dissolving purpose of the intensify, the crystals will liquefy and turn out as an oil rather than crystals. This would be difficult to examine.