The pressure of the CO₂ = 0.995 atm
<h3>Further explanation</h3>
The complete question
<em>A student is doing experiments with CO2(g). Originally, a sample of gas is in a rigid container at 299K and 0.70 atm. The student increases the temperature of the CO2(g) in the container to 425K.</em>
<em>Calculate the pressure of the CO₂ (g) in the container at 425 K.</em>
<em />
<em />
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

P₁=0.7 atm
T₁=299 K
T₂=425 K

<em />
A solute dissolves in excess solvent to form a solution:
solute + solvent → solution
<h3>What is the Enthalpy and their relation ? </h3>
A thermodynamic system's enthalpy, which is one of its properties, is calculated by adding the system's internal energy to the product of its pressure and volume. It is a state function that is frequently employed in measurements of chemical, biological, and physical systems at constant pressure, which the sizable surrounding environment conveniently provides.
A solution is a uniform mixture of two or more components that can exist in the solid, liquid, or gas phases. The amount of heat that is released or absorbed during the dissolving process is known as the enthalpy change of solution (at constant pressure).
There are two possible values for this enthalpy of solution ( H solution ) : positive (endothermic) and negative (exothermic). It is most straightforward to visualize a hypothetical three-step process occurring between two substances while trying to grasp the enthalpy of solution. The solute is one substance; let's call it A. The solvent is the second component; let's call it B.
The initial procedure exclusively affects the solute A and calls for disabling all intramolecular forces holding it together. This indicates that the molecules of the solute separate. This process' enthalpy is known as H1. Since breaking interactions requires energy, this is always an endothermic process, hence H1>0.
Their sign will be opposite.
To know more about Enthalpy please click here : brainly.com/question/14047927
#SPJ4
Part 1 :- Super gaint star have mass from 10 to 70 solar masses and brightness from 30,000 upto hundreds of thousand times the solar luminosity
blue super giant surface temperature is 20,000 to 50,000 degree Celsius example :0 Rigel its mass is around 20 times the sun mass it give light which 60,000 sun together give .
part 2 :- HR diagram : hertzsprung -Russel diagram ( attached below)
Answer:
Option (B) 3.
Explanation:
In the model represented above, the two extreme represent carbon atoms since no other group are attached to it. The joint at the middle also represent carbon atom.
Thus, we can write a more simplify illustration for the model above as
C—C—C
From the above illustration, we can see that the model contains 3 carbon atom.
Hi yes bestie just make sure you eat enough so that you can actually build the mussel