Sodium Phosphide has a formula of Na3P . In order to bond ionically the charges must be equal and opposite. It will take one -3 phosphide ion to balance three +1 sodium ions forming a magnesium phosphide molecule of Na3P
Answer:
= 2.94 atm
Explanation:
The total pressure (
) in the container is given by:

The pressure of the oxygen (
) and the pressure of the helium (
) can be calculated using the ideal gas law:

<u>Where</u>:
V: is the volume = 25.0 L
n: is the number of moles of the gases
R: is the gas constant = 0.082 Latm/(Kmol)
T: is the temperature = 298 K
First, we need to find the number of moles of the oxygen and the helium:

Where m is the mass of the gas and M is the molar mass
And the number of moles of helium is:

Now, we can find the pressure of the oxygen and the pressure of the helium:


Finally, the total pressure in the container is:

Therefore, the total pressure in the container is 2.94 atm.
I hope it helps you!
Answer:
An unbalanced single replacement reaction
Answer:
: -ve
: -ve,
: +ve
Explanation:
Endothermic reactions are those in which heat is absorbed by the system and exothermic reactions are those in which heat is released by the system.
for Endothermic reaction is positive and
for Exothermic reaction is negative.
Entropy is the measure of randomness or disorder of a system. If a system moves from an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa.
is positive when randomness increases and
is negative when randomness decreases.

As 15 moles of gaseous reactants are changing into 18 moles of gaseous products, randomness is increasing and thus
is positive.
Using Gibbs Helmholtz equation:



Thus
is negative ,
is positive and
is negative.