This is a tough one but the answer is water
think of it this way the ocean is water
Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
The answer is the last one, “The cell membrane is the only source of support and structure in plant and animal cells.” That is false because plant cells have a cell wall and cell membrane while animal cells only have a cell membrane.
Hope this helps:)
<span>A reducing agent loses electrons, so on the left side of the equation N in HNO2 has an oxidation number of +3 and on the right side in NO3^- it has an oxidation number of +5, so it has lost electrons. Thus, the reducing agent would be HNO2.</span>
Answer:
108.6 g
Explanation:
- 2NaN₃(s) → 2Na(s) + 3N₂(g)
First we use the <em>PV=nRT formula</em> to <u>calculate the number of nitrogen moles</u>:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 0 °C ⇒ 0 + 273.2 = 273.2 K
<u>Inputting the data</u>:
- 1.00 atm * 56.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 273.2 K
Then we <u>convert 2.5 moles of N₂ into moles of NaN₃</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 2.5 mol N₂ *
= 1.67 mol NaN₃
Finally we <u>convert 1.67 moles of NaN₃ into grams</u>, using its <em>molar mass</em>:
- 1.67 mol * 65 g/mol = 108.6 g