Answer:
(a) 2.542 cm
(b) 272.7°C
Explanation:
diameter, d = 2.540 cm
T1 = 20°C
α = 11 x 10^-6 /°C
(a) Let d' be the diameter.
T2 = 87°C
Use he formula for the areal expansion
A' = A ( 1 + βΔT)
where, β is the coefficient of areal expansion and ΔT is teh rise in temperature, A' be the area at high temperature and A be the area at low temperature.
β = 2 α = 2 x 11 x 106-6 = 22 x 10^-6 /°C
So,

D'^2 = 2.54^2 ( 1 + 22 x 10^-6 x 67)
D' = 2.542 cm
(b) Let the change in temperature is ΔT.
Use the formula for the volumetric expansion
ΔV = V x γ x ΔT
Where, γ = 3 x α = 3 x 11 x 10^-6 = 33 x 10^-6 /°C
0.9/100 = 33 x 10^-6 x ΔT
ΔT = 272.7°C
Answer:
Wind
Explanation:
I had this question on one of my tests, and I got it right
The wall will push back with an equal and opposite force, as defined by Newton's Third Law, so the wall will exert -200 N of force
Answer:
Unless they came marked with “N” or “S,” the poles of a magnet look the same. One easy way to tell which pole is north and which is south is to set your magnet near a compass. The needle on the compass that normally points toward the north pole of the Earth will move toward the magnet's south pole.
Explanation:
A louder sound, with a bigger amplitude, will make them move further, for example. Frequently is how quickly the oscillation happens. A bigger frequency will make the compressions get closer together (more frequent), making the rarefactions smaller.