Answer:
The correct answer is the Convex lens. An image is formed when a ray of light coming from a point intersects at another point. The image is formed by the real intersection of light. The image is formed by the virtual intersection of Light.
here is the site : textbook.com
Answer:
Total displacement will be 47 meter
Total distance will be 83 meters
Explanation:
We have given that first the student go eastward towards bus stop 20 meters
But he realizes that she dropped his physics notebook and so h=she turns back along the same way up to 18 meters
So displacement = 20-18 = 2 meters
And he travel 45 meters in east along the bus stop so total displacement = 45+2 = 47 meters
Total distance traveled by the student = 20+18+45 = 83 meters
Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
Answer:
- The distance between the charges is 5,335.026 m
Explanation:
To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:

where k is Coulomb's constant,
and
are the charges and d is the distance between the charges.
Working a little the equation, we can take:


And this equation will give us the distance between the charges. Taking the values of the problem

(the force has a minus sign, as its attractive)




And this is the distance between the charges.
To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1