Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
The equation N2+H2= NH3 is balanced. This is because N2 + 3H^2 ➡️ 2NH^3
part 1 : the final volume : 1.404 L
part 2 : the initial concentration : 4.06 M
<h3>Further explanation
</h3>
Dilution is the process of adding a solvent to get a more dilute solution.
The moles(n) before and after dilution are the same.
Can be formulated :
M₁V₁=M₂V₂
M₁ = Molarity of the solution before dilution
V₁ = volume of the solution before dilution
M₂ = Molarity of the solution after dilution
V₂ = Molarity volume of the solution after dilution
part 1 :
M₁=44.8%
V₁=0.73 L
M₂=23.3%

part 2 :
V₁=739 ml=0.739 L
V₂=1.5 L
M₂=2

Alkaline battery are a type of primary battery dependent upon the reaction between zinc metal and manganese dioxide.
The alkaline battery gets its name because it has an alkaline electrolyte of potassium hydroxide, instead of the acidic ammonium chloride or zinc chloride electrolyte of the zinc-carbon batteries.