The absolute refractive index is equal to the speed of light of the wave in air divided by the speed of light in the second medium. This means that it is equal to 3 x10^8 / 1.71 x10^8. This means the answer is 1.75
A., 101.7 km/h is the correct answer for this question
Answer:
A.3.64 m
Explanation:
Because
- v=(fλ)
- (1382)=(380)λ
- λ=3.637m~3.64m
<em>where</em><em> </em><em>,</em><em>v</em><em>=</em><em>velocity</em>
<em>f</em><em>=</em><em>frequency</em><em> </em>
<em>λ</em><em>=</em><em>wave</em><em> </em><em>length</em><em> </em>
Answer:
1.40625 kg-m^2
Explanation:
Supposing we have to calculate rotational moment of inertia
Given:
Mass of the ball m= 2.50 kg
Length of the rod, L= 0.78 m
The system rotates in a horizontal circle about the other end of the rod
The constant angular velocity of the system, ω= 5010 rev/min
The rotational inertia of system is equal to rotational inertia of the the ball about other end of the rod because the rod is mass-less

=1.40625 kg-m^2
m= mass of the ball and L= length of the ball
Based on radiometric dating of Apollo rock samples, the rocks have been detected to be about 4.5 Billion years old.
Hope this helps!