Because the universe is sort of like the surface of a balloon just like soap bubbles. The reason for this, is because of all the clusters and superclusters that are found within the bubble walls. Hope that helps!
Explanation:
Use the height of the cliff to determine how long it took the car to land.
Take down to be positive. Given:
Δy = 7.93 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
7.93 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.27 s
Use the time to calculate the horizontal velocity.
Given:
Δx = 26.7 m
a = 0 m/s²
Find: v₀
Δx = v₀ t + ½ at²
26.7 m = v₀ (1.27 s) + ½ (0 m/s²) (1.27 s)²
v₀ = 21.0 m/s
The driver was going 21.0 m/s, faster than the speed limit of 9.72 m/s.
Answer:
kinetic energy (K.E) = 5.28 ×10⁻¹⁷
Explanation:
Given:
Mass of α particle (m) = 6.50 × 10⁻²⁷ kg
Charge of α particle (q) = 3.20 × 10⁻¹⁹ C
Potential difference ΔV = 165 V
Find:
kinetic energy (K.E)
Computation:
kinetic energy (K.E) = (ΔV)(q)
kinetic energy (K.E) = (165)(3.20×10⁻¹⁹)
kinetic energy (K.E) = 528 (10⁻¹⁹)
kinetic energy (K.E) = 5.28 ×10⁻¹⁷
Answer:
Average velocity is said to be equal to the instantaneous velocity when acceleration is zero. When acceleration of an object is equal to zero, there can be no change in speed or direction.