Set up the problem with the conversion rates as fractions where when you multiply the units cancel out leaving the desired units behind.
Answer:
Explanation:
gravitational acceleration of meteoroid
= GM / R²
M is mass of planet , R is radius of orbit of meteoroid from the Centre of the planet .
R = (.9 x 6370 + 600 )x 10³ m
= 6333 x 10³ m
M , mass of the planet = 5.97 x 10²⁴ kg .
gravitational acceleration of meteoroid
= GM / R²
= (6.67 x 10⁻¹¹ x 5.97 x 10²⁴ kg / (6333 x 10³ m)²
9.92m/s²
The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
The Kinetic energy of the stuntman is equal to the elastic potential energy of the spring.
<h3 /><h3>Velocity: </h3>
This is the ratio of displacement to time. The S.I unit of Velocity is m/s. The velocity of the stuntman can be calculated using the formula below.
⇒ Formula:
- mv²/2 = ke²/2
- mv² = ke².................. Equation 1
⇒ Where:
- m = mass of the stuntman
- v = velocity of the stuntman
- k = force constant of the spring
- e = compression of the spring
⇒ Make v the subject of the equation
- v = √(ke²/m)................. Equation 2
From the question,
⇒ Given:
- m = 48 kg
- k = 75 N/m
- e = 4 m
⇒ Substitute these values into equation 2
- v = √[(75×4²)/48]
- v = √25
- v = 5 m/s.
Hence, The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
Learn more about velocity here: brainly.com/question/10962624
Answer:
there yah go that's the answer
Answer:
Decreased by a factor of 4.5
Explanation:
"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
are the masses of the object and Earth itself. and R distance between, or the Earth radius.
So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:




Since
and 

So gravity would have been decreased by a factor of 4.5