0.02020 ohm is the resistance of a carbon rod at 25.8 ∘C if its resistance is 0.0200 Ω at 0.0 ∘C.
<h3 /><h3>What is a resistor?</h3>
A resistor is an electrical component that controls or restricts how much electrical current can pass across a circuit in an electronic device. A specified voltage can be supplied via resistors to an active device like a transistor.
The temperature of the resistor varies based on the variation in the temperature. The equation that describes the relationship between the two of them is:
R = R0[1+ alpha(T-T0)] where:
R is the new resistance we are looking for
alpha is the temperature coefficient of resistance. For carbon rod, alpha = ₋ 4.8 x
(1/°c)
T0 is the standard temperature =25.8°C
R0 is the resistance at T0 = 0.0200 ohms
T is the temperature at which we want to get R = 0
Substitute in the equation to get R as follows:
R = 0.0200 [1+( ₋ 4.8 x
) (0-25.8)] = 0.02020 ohm
To know more about resistance refer to: brainly.com/question/11431009
#SPJ1
Answer:
a) F = 64.30 N, b) θ = 121.4º
Explanation:
Forces are vector quantities so one of the best methods to add them is to decompose each force and add the components
let's use trigonometry
Force F1
sin 170 = F_{1y} / F₁
cos 170 = F₁ₓ / F₁
F_{1y} = F₁ sin 170
F₁ₓ = F₁ cos 170
F_{1y} = 100 sin 170 = 17.36 N
F₁ₓ = 100 cos 170 = -98.48 N
Force F2
sin 30 = F_{2y} / F₂
cos 30 = F₂ₓ / F₂
F_{2y} = F₂ sin 30
F₂ₓ = F₂ cos 30
F_{2y} = 75 sin 30 = 37.5 N
F₂ₓ = 75 cos 30 = 64.95 N
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = -98.48 +64.95
Fₓ = -33.53 N
Y axis
F_y = F_{1y} + F_{2y}
F_y = 17.36 + 37.5
F_y = 54.86 N
a) the magnitude of the resultant vector
let's use Pythagoras' theorem
F = Ra Fx ^ 2 + Fy²
F = Ra 33.53² + 54.86²
F = 64.30 N
b) the direction of the resultant
let's use trigonometry
tan θ’= F_y / Fₓ
θ'= 
θ'= tan⁻¹ (54.86 / (33.53)
θ’= 58.6º
this angle is in the second quadrant
The angle measured from the positive side of the x-axis is
θ = 180 -θ'
θ = 180- 58.6
θ = 121.4º
Answer:
y = -19.2 sin (23.15t) cm
Explanation:
The spring mass system is an oscillatory movement that is described by the equation
y = yo cos (wt + φ)
Let's look for the terms of this equation the amplitude I
y₀ = 19.2 cm
Angular velocity is
w = √ (k / m)
w = √ (245 / 0.457
w = 23.15 rad / s
The φ phase is determined for the initial condition t = 0 s
, the velocity is negative v (0) = -vo
The speed of the equation is obtained by the derivative with respect to time
v = dy / dt
v = - y₀ w sin (wt + φ)
For t = 0
-vo = -yo w sin φ
The angular and linear velocity are related v = w r
v₀ = w r₀
v₀ = v₀ sinφ
sinφ = 1
φ = sin⁻¹ 1
φ = π / 4 rad
Let's build the equation
y = 19.2 cos (23.15 t + π/ 4)
Let's use the trigonometric ratio π/ 4 = 90º
Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a
y = -19.2 sin (23.15t) cm
Answer:
The force is 86.5×10^9 N towards the negative charge (to the right)
Explanation:
The electrostatic force on the charges is given by Coulomb's law;
F= Kq1q2/r^2
This an inverse square law.
F= electrostatic force on the charges
K= constant of Coulomb's law
q1 and q2= magnitude of the charges
Since K= 9.0×10^9Nm^2C^2
F= 9.0×10^9 × 5 × 3/(1.25)^2 = 135×10^9/1.56
F= 86.5×10^9 N
The force is 86.5×10^9 N towards the negative charge.