(a) The net force on the shopping cart is zero.
(b) The the force of friction on the shopping cart is 25 N.
(c) When same force is applied to the shopping cart on a wet surface, it will move faster.
<h3>Net force on the shopping cart</h3>
The net force on the shopping cart is calculated as follows;
F(net) = F - Ff
where;
- F is the applied force
- Ff is the frictional force
ma = F - Ff
where;
- a is acceleration of the cart
- m is mass of the cart
at a constant velocity, a = 0
0 = F - Ff
F(net) = 0
F = Ff = 25 N
Net force is zero, and frictional force is equal to applied force.
<h3>On wet surface</h3>
Coefficient of kinetic friction of solid surface is greater than that of wet surface.
Since frictional force limit motion, when the frictional force is smaller, the object tends to move faster.
Thus, the cart will move faster on a wet surface due to decrease in friction.
Learn more about frictional force here: brainly.com/question/24386803
#SPJ1
Answer:
They would land at the same time
Explanation:
They would land at the same exact time.
As weird, impossible and unbelievable as it appears. When in a vacuum, every weight, body and material when released from the same height would land on the ground at the same time. This also means that like in the question, a feather and a ball would land at the same time. And just for illustrations as well, a feather and a car would land at the same time as well.
Given from the problem :mass m = 413 kg;coefficient of friction u = 0.0163;acceleration due to gravity g = 9.8 m/s2;inclined angle @1 = 14.3;inclined angle @2 = 4.69;distance travelled d = 175 m;applied fore F = 410 N; the component of the force from the donkey in the direction of motion isF2 = F1
[email protected]= 397.2964498768165 N
Fy = N - mg
[email protected] = 0N = mg
[email protected] = 4037.964151113007 NFx = F2 - mg
[email protected] - f = mahere f = u N=65.8188156631420141
F2 - mg
[email protected] - f = maa = F2 - mg
[email protected] - f/ m=0.31923412183075155 m/s^2
work done by donkeyW = F2 d=69526.8787284428875 J