"he force exerted by the car is more than the force exerted b y the snowball" is the one among the following that can be said <span>about the magnitude of the forces exerted by the snowball and the car. The correct option among all the options that are given in the question is the first option or option "A". I hope it helps you.</span>
Answer:

Explanation:
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
The gravitational force is always attractive.
In this problem, we have:
is the mass of the Earth
is the mass of the Moon
is the separation between the Earth and the Moon
Therefore, the gravitational force between them is

Answer:
600 KPa.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V1) = 0.075 m³
Final volume (V2) = 0.45 m³
Final pressure (P2) = 100 KPa
Initial pressure (P1) =?
Temperature = constant
The initial pressure can be obtained by using the Boyle's law equation as shown below:
P1V1 = P2V2
P1 × 0.075 = 100 × 0.45
P1 × 0.075 = 45
Divide both side by 0.075
P1 = 45 / 0.075
P1 = 600 KPa.
Thus, the initial pressure in the balloon is 600 KPa.
Due to the theory of dried enzimes and philosophy, the spilled milk would have an higher entropy.