You said that she's losing 1.9 m/s of her speed every second.
So it'll take
(6 m/s) / (1.9 m/s²) = 3.158 seconds (rounded)
to lose all of her initial speed, and stop.
Answer:
22.2 m/s
Explanation:
First, we need to convert km to m by multiplying by 1000. This means that the car traveled 320 000 meters.
Next, we convert hours to minutes by multiplying by 3600 (the number of seconds in an hour). This means that overall, the car traveled 320 000 m in 14 400 seconds.
The average speed can be found by using the equation
. After substitution, this gives the fraction
, which reduces to 22
m/s, or about 22.2 m/s.
Passengers in an aircraft are subject to the Normal and Gravity Force acting on them at a low 'orbit', so tiny that it can be many times compared to the same surface of the earth when speaking in general terms.
In a high orbit space vehicle or in the same space, said force decreases considerably or simply disappears, generating the sensation of weightlessness.
Remember that the Force of Gravity is given under the principle

Where,
G = Gravitational Universal constant
M = Mass of the planet
m = mass of the object
r = Distance from center of the planet
When the radius grows considerably the gravitational force begins to decrease.
C
Explanation:
that's just what I learned in school
Answer: the minimal force that you need to apply to move the bureau is F = 198.45N
Explanation:
If you want to move an object, you need to apply a force that is bigger than the force of the statical friction.
The force of statical friction can be written as.
Ff = k*N
where k is the coefficient of static friction, in this case, k = 0.45, and N is the normal force between the object and the surface.
In this case, the normal force is the weight of the bedroom bureau, this is:
N = m*g = 45kg*9.8m/s^2 = 441N
Then the force is:
Fr = 0.45*441N = 198.45N
This means that the minimal force that you need to apply to move the bureau is F = 198.45N
and after this point, the force of friction will work wit the kinetic coefficient of friction, that usually is smaller than the statical one.