Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is 
The location of the prob at time t = 22.9 s is 
The momentum at time t = 22.9 s is
The net force on the probe is 
Generally the change in momentum is mathematically represented as

The initial time is 22.6 s
The final time is 22.9 s
Substituting values

Answer:
d. We can calculate it by applying Newton's version of Kepler's third law
Explanation:
The measurements of a Star like the Sun have several problems, the first one is distance, but the most important is the temperature since as we get closer all the instruments will melt. This is why all measurements must be indirect because of the effects that these variables create on nearby bodies.
Kepler's laws are deduced from Newton's law of universal gravitation, in these laws the mass of the Sun affects the orbit of the planets since it creates a force of attraction, if measured the orbit and the time it takes to travel it we can know the centripetal acceleration and with it knows the force, from where we clear the mass of the son.
Let's review the statements of the exercise
.a) False. We don't have good enough models for this calculation
.b) False. The size of the sun is very difficult to measure because it is a mass of gas, in addition the density changes strongly with depth
.c) False. The amount of light that comes out of the sun is not all the light produced and is due to quantum effects where the mass of the sun is not taken into account
.d) True. This method has been used to calculate the mass of the sun and the other planets since the variable distance and time are easily measured from Earth
Correct answer is D
Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.
Speed = frequency * wavelength
This is a uniform rectilinear motion (MRU) exercise.
To start solving this exercise, we obtain the following data:
<h3><u>
Data:</u></h3>
- v = 4.6 m/s
- d = ¿?
- t = 10 sec
To calculate distance, speed is multiplied by time.
We apply the following formula: d = v * t.
We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:


Therefore, the speed at 10 seconds is 46 meters.
