F = ma so u can plug in the given numbers and solve:
F = (2)(3)
The first thing you should know for this case is the definition of distance.
d = v * t
Where,
v = speed
t = time
We have then:
d = v * t
d = 9 * 12 = 108 m
The kinetic energy is:
K = ½mv²
Where,
m: mass
v: speed
K = ½ * 1500 * (18) ² = 2.43 * 10 ^ 5 J
The work due to friction is
w = F * d
Where,
F = Force
d = distance:
w = 400 * 108 = 4.32 * 10 ^ 4
The power will be:
P = (K + work) / t
Where,
t: time
P = 2.86 * 10 ^ 5/12 = 23.9 kW
answer:
the average power developed by the engine is 23.9 kW
Answer:
Speed of the car 1 =
Speed of the car 2 =
Explanation:
Given:
Mass of the car 1 , M₁ = Twice the mass of car 2(M₂)
mathematically,
M₁ = 2M₂
Kinetic Energy of the car 1 = Half the kinetic energy of the car 2
KE₁ = 0.5 KE₂
Now, the kinetic energy for a body is given as

where,
m = mass of the body
v = velocity of the body
thus,

or

or

or

or

or
.................(1)
also,

or

or

or

or

or

or

or

or

and, from equation (1)

Hence,
Speed of car 1 =
Speed of car 2 =
Answer:
Because the Earth has it's own gravity that keeps us put, and we also have the moon.
Explanation: