1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
3 years ago
10

A box slides down a frictionless ramp.if it starts at rest, what is it’s speed at the bottom?

Physics
1 answer:
zhenek [66]3 years ago
3 0

8.854 m/s is the speed of the box after it reaches bottom of the ramp.

<u>Explanation</u>:

From the figure we came to know that height of the block is 4 m.

We know that,

Total "initial energy of an object" = Total "final energy of an object "

Total "initial energy of an object" is = "sum of potential energy" and "kinetic energy" of an object at its initial position.

\text { "g" acceleration due to gravity is } 9.8 \mathrm{m} / \mathrm{s}^{2}

\text { Total initial energy }=\mathrm{m} \times \mathrm{g} \times \mathrm{h}_{\mathrm{i}}+\frac{1}{2} \mathrm{m} v_{i}^{2}

Initial velocity is “0” as the object does not have starting speed

\text { Height of the block where the object is placed initially }\left(h_{i}\right) \text { is } 4 \mathrm{m} \text { . }

\text { Total initial energy }=\mathrm{m} \times 9.8 \times 4+\frac{1}{2} \mathrm{m} 0^{2}

Total initial energy = 39.2 × m

\text { Total final energy }=\mathrm{m} \times \mathrm{g} \times \mathrm{h}_{\mathrm{f}}+\frac{1}{2} m v_{f}^{2}

\text { We need to find final velocity } v_f

\text { Height of the block where the object is travelled to bottom (h_) is } 0 \mathrm{m} \text { . }

\text { Total final energy }=\mathrm{m} \times 9.8 \times 0+\frac{1}{2} m v_{f}^{2}

Now,  Total initial energy of an object = Total final energy of an object

39.2 \times \mathrm{m}=0.5 \mathrm{m} v_{f}^{2}

\frac{39.2}{0.5}=v_{f}^{2}

v_{f}^{2}=78.4

v_{f}=\sqrt{78.4}

v_{f}=8.854 \mathrm{m} / \mathrm{s}

Final speed is 8.854 m/s.

You might be interested in
Two metal balls have charges of 7.1 × 10-6 coulombs and 6.9 × 10-6 coulombs. They are 5.7 × 10-1 meters apart. What is the force
Murljashka [212]
The answer is 1.4 newtons <span />
6 0
3 years ago
Read 2 more answers
Carl works hard to get a grades on his report card because his mother pays him 25 dollars for each semester he earns straight as
Aleksandr [31]
He is influenced by EXTRINSIC MOTIVATION
8 0
3 years ago
Describe the role of the plasma membrane
lara31 [8.8K]
The plasma membrane of a cell is a group of lipids and proteins that forms the boundary between a cell's contents and the outside of the cell.
5 0
3 years ago
When is the force on a current-carrying wire in a magnetic field at its strongest?
Hitman42 [59]

The forces on a current-carrying wire in a magnetic field are at their strongest when the current is at a 90-degree angle to the field. Option D is correct.

<h3>What is a magnetic field?</h3>

It is the type of field where the magnetic force is obtained. The magnetic force is obtained by the field felt around a moving electric charge.

The complete question is;

"When is the force on a current-carrying wire in a magnetic field at its strongest?

-when the current is at a 0-degree angle to the field

-when the current is at a 30-degree angle to the field

-when the current is at a 45-degree angle to the field

-when the current is at a 90-degree angle to the field"

The magnetic force is found as;

F=BILSINΘ

Where,

Magnetic Field, B

Length of the wire, L

The angle between field and current, Θ

When Θ=90°

The value of the magnetic force is;

F=BIL

When the current is flowing at a 90-degree angle to the magnetic field, the forces acting on a wire carrying a current are the strongest.

Hence, option D is correct.

To learn more about the magnetic field, refer to the link;

brainly.com/question/19542022

#SPJ1

4 0
2 years ago
If the acceleration due to gravity at the surface of planet x is double the value of earth's, how does planet x's mass compare t
love history [14]
There is not enough information given to answer with. The force of gravity at the planet's surface depends on the planet's radius as well as its mass. The planet could have exactly the same mass as Earth has. But if it's radius is only 71% of Earth's radius, then gravity on its surface will be twice as strong as gravity on Earth.
3 0
4 years ago
Other questions:
  • How is the kelvin scale different from the Celsius scale?
    6·1 answer
  • Refer to Figure 13-2 and determine how much parent material will be left after five half-lives
    14·2 answers
  • Two particles having charges of 0.440 nC and 11.0 nC are separated by a distance of 1.80 m . 1) At what point along the line con
    5·1 answer
  • What is the period of 60.0 hz electrical power?
    12·1 answer
  • Please help, which vector represent the force that will produce equilibrium with these two forces?
    13·1 answer
  • Arrange the temperatures 40 ºF, 40 ºC, and 40 K from highest to lowest.
    11·2 answers
  • Tarzan, whose mass is 75 kg, is running from a cheetah. Tarzan is moving at 5 m/s when he grabs onto a hanging vine. How high of
    7·1 answer
  • What is the power of a 650N force that moves an object 75cm in 0.63s?​
    6·1 answer
  • A go cart with a mass of 60 kg is moving at a rate of 10 m/s. How much Kinetic Energy does the go cart have?
    13·2 answers
  • Help me for physics please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!