Answer:
sure if its easy im jp ill help u
Explanation:
Answer:
d_{b} = 2 d_{a}
Explanation:
The electrical resistance for a cylindrical wire is described by the expression
R = ρ L / A
The area of a circle is
A = π r²
r = d / 2
A = π d²/4
We substitute
R = ρ L 4 /π d²
Let's apply this expression to our case, they indicate that the resistance of wire A is 4 times the resistance of wire B
= 4 R_{b}
We substitute
ρ 4/π
² = 4 (ρ 4/π d_{b}²)
1 / d_{a}² = 4 / d_{b}²
d_{a} = d_{b} / 2
Answer:
The material must be durable (quality of the material requirement)
Explanation:
The design criteria set for the materials used for technological design are;
1) The materials should be affordable (less costly)
2) The materials should be last for a long duration (high durability)
3) The material should be readily available (easily sourced)
Therefore, given that the engineers initially had the criteria for the required plastic to be of high quality and to be readily available, and that the poly-carbonate they found is long lasting and not too costly, the criteria met that was set initially was the quality criteria of durability.
Answer:
anaemia, low blood pressure etc.
Option c) 1.5 V
Explanation:
<em>As the circuit is build in series first we will find the current passing through the complete circuit. Current stays the same in each element is the series cirucuit, however, the voltage is different.</em>
Voltage is given by the following formula:
V = IR
<em>Because we have to find current through whole circuit, we will first find resistance of the whole circuit.</em>
Equivalent Resistance R(eq): R1 + R2 = 60 + 60 = 120 ohm
Current passing through whole circuit be:
= 0.025
Now we will find out the voltage between C and D:
Current stays the same in series circuit: I = 0.025 c
Resistance between C and D is, R = 60 ohm
Voltage becomes, V = IR = 0.025 * 60 = 1.5 V