Hey
Potential Difference given is : 2V
Resistance is : 2 ohms
By Ohm's Law, one can easily utilize the relation :

Where, { v , i , r } are the potential difference, current and Resistance Respectively.
Hence,

Hence, the Current is 1 Ampere
Answer: The force does not change.
Explanation:
The force between two charges q₁ and q₂ is:
F = k*(q₁*q₂)/r^2
where:
k is a constant.
r is the distance between the charges.
Now, if we increase the charge of each particle two times, then the new charges will be: 2*q₁ and 2*q₂.
If we also increase the distance between the charges two times, the new distance will be 2*r
Then the new force between them is:
F = k*(2*q₁*2*q₂)/(2*r)^2 = k*(4*q₁*q₂)/(4*r^2) = (4/4)*k*(q₁*q₂)/r^2 = k*(q₁*q₂)/r^2
This is exactly the same as we had at the beginning, then we can conclude that if we increase each of the charges two times and the distance between the charges two times, the force between the charges does not change.
I believe the answer is Nonmaterial Culture.
The answer is B, The speed is constant and the velocity is changing.
The acceleration of gravity on or near the surface of the Earth is 9.8 m/s².
Anything acted on only by gravity loses 9.8 m/s of upward speed, or gains
9.8 m/s of downward speed, every second.
Leaping straight upward at 1.8 m/s, Tina keeps rising until she runs out of
upward speed. That happens in (1.8/9.8) = 0.1837 second after the leap.
After that, Finkel's First Law of Motion takes over:
"What goes up must come down."
The dropping part of the leap is symmetrical with the first. Please don't
make me go through proving it. Tina hits the floor at the same speed of
1.8 m/s with which she left it, and it takes the same amount of time to drop
from the peak to the floor as it took to rise from the floor to the peak.
So her total time out of contact with the floor is
2 x (0.1837 sec) = 0.367 second (rounded)