Answer:
that statement is true, trust me lol
Answer:
b. E (about 329 Hz)
Explanation:
Given data:
Initial length of the string l1= 24 in
initial frequency f1= 247 Hz
changed length l2= 18 in
Then we have to find the changed frequency f2= ?
We already now that
frequency f ∝ 1/length of the string l
therefore,

⇒
⇒
⇒
a. The force applied would be equal to the frictional
force.
F = us Fn
where, F = applied force = 35 N, us = coeff of static
friction, Fn = normal force = weight
35 N = us * (6 kg * 9.81 m/s^2)
us = 0.595
b. The force applied would now be the sum of the
frictional force and force due to acceleration
F = uk Fn + m a
where, uk = coeff of kinetic friction
35 N = uk * (6 kg * 9.81 m/s^2) + (6kg * 0.60 m/s^2)
uk = 0.533