Answer:
The mass of O₂ that will be needed to burn 36.1 g B₂H₆ is 125.29 g.
Nuclear reactions involve a change in an atom's nucleus, usually producing a different element. Chemical reactions, on the other hand, involve only a rearrangement of electrons and do not involve changes in the nuclei.
<h3>What affects the rate of nuclear reactions?</h3>
Reactant concentration, the physical state of the reactants, and surface area, temperature, and the presence of a catalyst are the four main factors that affect reaction rate.
<h3>What is the main difference between chemical reactions and nuclear reactions?</h3>
Chemical reaction normally occurs outside the nucleus. Nuclear reaction happens only inside the nucleus. When chemical reactions occur elements hold their identity and the nuclei of atoms also remains unchanged. During nuclear reactions, the nuclei of atoms changes completely and new elements are formed.
Learn more about chemical reaction here:
<h3>
brainly.com/question/11231920</h3><h3 /><h3>#SPJ4</h3>
Explanation:
because translucent shades lets the light through easily (gentle diffusion)
A is the answer
Hope it helps :)
<h3><u>Full Question:</u></h3>
The following compound has been found effective in treating pain and inflammation (J. Med. Chem. 2007, 4222). Which sequence correctly ranks each carbonyl group in order of increasing reactivity toward nucleophilic addition?
A) 1 < 2 < 3
B) 2 < 3 < 1
C) 3 < 1 < 2
D) 1 < 3 < 2
<h3><u>Answer: </u></h3>
The rate of nucleophilic attack of carbonyl compounds is 2<3 <1.
Option B
<h3><u>Explanation. </u></h3>
Nucleophilic attack is explained as the attack of an electron rich radical to a carbonyl compound like aldehyde or a ketone. A nucleophile has a high electron density, so it searches for a electropositive atom where it can donate a portion of its electron density and become stable.
A carbonyl compound is a
hybridized carbon atom with a double bonded oxygen atom in it. The oxygen atom pulls a huge portion of electron density from carbon being very electropositive.
In a ketone, there are two factors that make it less likely to undergo a nucleophilic attack than aldehyde. Firstly, the steric hindrance of two carbon groups being attached with the carbonyl carbon makes it harder for the nucleophile to approach. Secondly, the electron push by the carbon groups attached makes the carbonyl carbon a bit less electropositive than the aldehyde one. So aldehydes are more reactive towards a nucleophilic addition reaction.