Answer:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Explanation:
BOOM!!!
Answer:
Electromagnetic cranes are used to separate copper from iron in a scrap yard. The current is switched on to energies the electromagnet and pick up the iron pieces from the scrap. Then these iron pieces are moved to another position, the electromagnet in switched off and the iron pieces are released.
Explanation:
Answer:
a) 23.51 m/s
b) 1.07 kg
Explanation:
Parameters given:
Kinetic energy, K = 295 J
Momentum, p = 25.1 kgm/s
a) The kinetic energy of a body is given as:

where m = mass of the body and v = speed of the body
We know that momentum is given as:
p = mv
Therefore:
K = 1/2 * pv
=> v = 2K / p
v = (2 * 295) / 25.1 = 23.51 m/s
The velocity of the body at that instant is 23.51 m/s.
b) Momentum is given as:
p = mv
=> m = p / v
m = 25.1 / 23.51 = 1.07 kg
The mass of the body at that instant is 1.07 kg
Answer:
Though the question is not specified here, but this information can determine the following quantity: period T= 6 secs, Frequency F=1/6 Hz, speed of rotation V= 2 pi ft/sec and wave length =pi/3 ft
Explanation:
Answer:
in the parallel connection the light bulbs shine less than in the series connection
Explanation:
In a series circuit the current through the whole circuit is the same, therefore the power (brightness) of each bulb is
P = i² R
where R is the resistance of each bulb and i the current of the circuit.
If we connect the light bulbs and the cells in parallel, the current in the circuit is the sum of the east that passes through each light bulb,
i = i₁ + i₂
if the two light bulbs are the same
i = 2 i₁
i₁ = i / 2
so the power of each bulb is is
P = i₁² R
P = R i² / 4
P = ¼ P_initial
Therefore we see that in the parallel connection the light bulbs shine less than in the series connection