Answer:
<em>The new period of oscillation is D) 3.0 T</em>
Explanation:
<u>Simple Pendulum</u>
A simple pendulum is a mechanical arrangement that describes periodic motion. The simple pendulum is made of a small bob of mass 'm' suspended by a thin inextensible string.
The period of a simple pendulum is given by

Where L is its length and g is the local acceleration of gravity.
If the length of the pendulum was increased to 9 times (L'=9L), the new period of oscillation will be:


Taking out the square root of 9 (3):

Substituting the original T:

The new period of oscillation is D) 3.0 T
Change in momentum: finial momentum - initial momentum
Momentum = mass * velocity
Mass = 100g, same as 0.1kg
m(v-u) = 0.1(10-2) = 0.1(8)
The answer is 0.8Ns
Answer:
Explanation:
Suppose v is the initial velocity and
is the angle of inclination
distance traveled in vertical direction in t=1 s
When gravity is present

where 



here initial velocity is v\sin \theta [/tex] so


In absence of gravity



Answer:
How long does the ball fall is t_2 = 13.66 (s).
From what height is the ball originally dropped is h= 913.90 (m).
Explanation:
Given that,
Radius of track, r = 50 m
time , t = 9 s
velocity, v = ?
Distance covered by car in one lap around a track is equal to the circumference of the track.
C = 2 π r = 2 * 3.14 * 50
C = 314.159 m
Distance covered by car, s = 314.159 m
Velocity = distance/ time
V = 314.159 / 9
V = 34.9 m/s
The average velocity of car is 34.9 m/s.