<span>Pice=920kg/m^3
deltaP=PgH=920kg/m^3 X 9.80665m/s^2 X 1000m = 9022118 Pa
P=Po + deltaP=101.325 + 9022 = 9123kPa</span>
Answer:
The Total Mechanical Energy
As already mentioned, the mechanical energy of an object can be the result of its motion (i.e., kinetic energy) and/or the result of its stored energy of position (i.e., potential energy). The total amount of mechanical energy is merely the sum of the potential energy and the kinetic energy.
Explanation:
Answer:
Dehydration reactions assemble polymers, and hydrolysis reactions break down polymers.
Explanation:
dehydration reaction is a conversion that involves the loss of water from the reacting molecule or ion.
Hydrolysis is defined as any chemical reaction in which a molecule of water ruptures one or more chemical bonds.
Dehydration reactions link monomers together into polymers by releasing water, and hydrolysis breaks polymers into monomers using a water molecule. Monomers are just single unit molecules and polymers are chains of monomers.
I'll tell you how I look at this, although I may be missing something important.
Position = x(t) = 0.5 sin(pt + p/3)
Speed = position' = x'(t) = 0.5 p cos(pt + p/3)
Acceleration = speed' = position ' ' = x ' '(t) = -0.5 p² sin(pt + p/3)
At (t = 1.0),
x ' '(t) = -0.5 p² sin( 4/3 p )
In order to evaluate this, don't I still have to know what 'p' is ? ?
I don't think it can be evaluated with the information given in the question.
I don't know what you mean when you say he "jobs" the other ball, and the answer to this question really depends on that word.
I'm going to say that the second player is holding the second ball, and he just opens his fingers and lets the ball <u><em>drop</em></u>, at the same time and from the same height as the first ball.
Now I'll go ahead and answer the question that I've just invented:
Strange as it may seem, <em>both</em> balls hit the ground at the <em>same time</em> ... the one that's thrown AND the one that's dropped. The horizontal speed of the thrown ball has no effect on its vertical acceleration, so both balls experience the same vertical behavior.
And here's another example of the exact same thing:
Say you shoot a bullet straight out of a horizontal rifle barrel, AND somebody else <em>drops</em> another bullet at exactly the same time, from a point right next to the end of the rifle barrel. I know this is hard to believe, but both of those bullets hit the ground at the same time too, just like the baseballs ... the bullet that's shot out of the rifle and the one that's dropped from the end of the barrel.