Answer: 5.30m
Explanation:
depth of pool = 3.2 m
i = 67.75°
Using snell's law, we have,
n₁ × sin(i) = n₂ × 2 × sin(r)
n₁ = 1, n₂ =1.33, r= 44.09°
Hence,
Distance of Google from edge if pool is:
2.2 + d×tan(r) = 2.2 + (3.2 × tan(44.09°) =5.30m
Answer:
Wm = 97.2 [N]
Explanation:
We must make it clear that mass and weight are two different terms, the mass is always preserved that is to say this will never vary regardless of the location of the object. While weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 60 [kg]
g = gravity acceleration = 10 [m/s²]
But in order to calculate the weight of the body on the moon, we must know the gravitational acceleration of the moon. Performing a search of this value on the internet, we find that the moon's gravity is.
gm = 1.62 [m/s²]
Wm = 60*1.62
Wm = 97.2 [N]
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
Weight = mass * gravity = 60 kg * 3.75 m/s² = 225 N
<span>Option D.</span>
Answer:
Explanation:
Wave produced in string and waves produced in air are different . The only similarity is that their frequency are equal . Otherwise , no similarity . One is transverse ( on wire ) , the other is longitudinal ( air ) . Their velocities too are different .
velocity = wavelength x frequency
if frequency is constant
wavelength ∝ velocity
wavelength is proportional to velocity . Since their velocities are different , their wavelength too will be different.