Answer:
It hit Earth like a really long time ago, so many rocks and soil should have been piled on top of the crater because of wind, rain, etc.
Also, it is really deep and really old so when it is old, it gets less visible to the naked eye.
The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
Answer: The chemical formula for the compound of these two elements is 
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here metal lead is having an oxidation state of +4 called as
cation and sulphur non metal has oxidation state of -2 called as
. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral 
The chemical formula for the compound of these two elements is 
First, you find the velocity at each component. The general equation is:
a = (v2 - v1)/t
a,x = (v2,x - v1,x)/t
-0.105 = (v2,x - 8.57)/6.67
v2,x = 7.87 m/s
a,y = (v2,y - v1,y)/t
0.101 = (v2,y - -2.61)/6.67
v2,y = -1.94 m/s
To find the final speed, find the resultant velocity by taking the hypotenuse.
v^2 = (v2,x)^2 + (v2,y)^2
v^2 = (7.87)^2 + (-1.94)^2
v = 8.1 m/s
Answer:
<h2>42.32 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 4.6 × 9.2
We have the final answer as
<h3>42.32 N</h3>
Hope this helps you