Answer:
Explanation:
Given that,
Weight of jet
W = 2.25 × 10^6 N
It is at rest on the run way.
Two rear wheels are 16m behind the front wheel
Center of gravity of plane 10.6m behind the front wheel
A. Normal force entered on the ground by front wheel.
Taking moment about the the about the real wheel.
Check attachment for better understanding
So,
Clock wise moment = anti-clockwise moment
W × 5.4 = N × 16
2.25 × 10^6 × 5.4 = 16•N
N = 2.25 × 10^6 × 5.4 / 16
N = 7.594 × 10^5 N
B. Normal force on each of the rear two wheels.
Using the second principle of equilibrium body.
Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces
ΣFy = 0
Nr + Nr + N — W = 0
2•Nr = W—N
2•Nr = 2.25 × 10^6 — 7.594 × 10^5
2•Nr = 1.491 × 10^6
Nr = 1.491 × 10^6 / 2
Nr = 7.453 × 10^5 N
They circulate blood and oxygen throughout your body
This is a great problem if you like getting tied up in knots
and making smoke come out of your brain.
I found that it makes the problem a lot easier if I give the objects some
numbers. I'm going to say that the mass of Object 5 is 20 clods.
Let the mass of Mass of Object 5 be 20 clods .
Then . . .
-- The mass of Object 2 is double the mass of Object 5 = 40 clods.
-- The mass of Object 4 is half of the mass of Object 5 = 10 clods.
and
-- the mass of Object 3 is half of the mass of Object 4 = 5 clods.
So now, here are the masses:
Object #1 . . . . . unknown
Object #2 . . . . . 40 clods
Object #3 . . . . . 5 clods
Object #4 . . . . . 10 clods
Object #5 . . . . . 20 clods .
Now let's check out the statements, and see how they stack up:
Choice-A:
Object 3 and Object 5 exert the same gravitational force on Object 1.
Can't be.
Objects #3 and #5 have different masses, so they can't both
exert the same force on the same mass.
Choice-B.
Object 2 and Object 4 exert the same gravitational force on Object 1.
Can't be.
Objects #2 and #4 have different masses, so they can't both
exert the same force on the same mass.
Choice-C.
The gravitational force between Object 1 and Object 2 is greater than
the gravitational force between Object 1 and Object 4.
Yes ! Yay !
Object-2 has more mass than Object-4 has, so it must exert more force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Choice-D.
The gravitational force between Object 1 and Object 3 is greater than the gravitational force between Object 1 and Object 5.
Can't be.
Object-3 has less mass than Object-5 has, so it must exert less force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Conclusion:
If the DISTANCE is the same for all the tests, then Choice-C is
the only one that can be true.
Answer:
Option (C)
Explanation:
From Newton's law of inertia, an object at rest tends to be at rest until there is an external force applied to it.
In the given question, the rock block that fell on the road due to the avalanche contains high mass and high inertia. Due to which the block was not able to move aside. <u>The amount of energy required to push the block aside should be more than the mass of the block</u>. So the block has high inertia value and it will need more force than its inertia value in order to move the block of rock towards the side of the road.
Thus, the correct answer is option (C).
The answer is C) the density of the rock
Density of rock is the dependent variable, because it depends on the temperature. The temperature can’t be the dependent variable because ,the density of a rock does not have magical powers that can change temperature of a room. However changing the temperature of the room ,will change the density of the rock. Hope this helps !