Answer:
A) ω = 6v/19L
B) K2/K1 = 3/19
Explanation:
Mr = Mass of rod
Mb = Mass of bullet = Mr/4
Ir = (1/3)(Mr)L²
Ib = MbRb²
Radius of rotation of bullet Rb = L/2
A) From conservation of angular momentum,
L1 = L2
(Mb)v(L/2) = (Ir+ Ib)ω2
Where Ir is moment of inertia of rod while Ib is moment of inertia of bullet.
(Mr/4)(vL/2) = [(1/3)(Mr)L² + (Mr/4)(L/2)²]ω2
(MrvL/8) = [((Mr)L²/3) + (MrL²/16)]ω2
Divide each term by Mr;
vL/8 = (L²/3 + L²/16)ω2
vL/8 = (19L²/48)ω2
Divide both sides by L to obtain;
v/8 = (19L/48)ω2
Thus;
ω2 = 48v/(19x8L) = 6v/19L
B) K1 = K1b + K1r
K1 = (1/2)(Mb)v² + Ir(w1²)
= (1/2)(Mr/4)v² + (1/3)(Mr)L²(0²)
= (1/8)(Mr)v²
K2 = (1/2)(Isys)(ω2²)
I(sys) is (Ir+ Ib). This gives us;
Isys = (19L²Mr/48)
K2 =(1/2)(19L²Mr/48)(6v/19L)²
= (1/2)(36v²Mr/(48x19)) = 3v²Mr/152
Thus, the ratio, K2/K1 =
[3v²Mr/152] / (1/8)(Mr)v² = 24/152 = 3/19
Answer:
The average speed of the earth in its orbit is 
Explanation:
The average distance between the Earth and the Sun is
.
The average speed of the earth in its orbit can be found by the next equation :
(1)
Where r is the radius and T is the period.
In this case, the orbit of the Earth can be considered as a circle
(
) instead of an ellipse.
It takes 1 year to the Earth to make one revolution around the Sun. Therefore, its period will be 365.25 days.
Notice that to express the period in terms of seconds, the following is needed:
⇒ 
Then, equation 1 can be used:


<em>Its B fam, hope you get that good grade.</em>
Answer: 704
Explanation:Vi = 0 m/s
vf = 65 m/s
a = 3 m/s2
d = ??
vf2 = vi2 + 2*a*d
(65 m/s)2 = (0 m/s)2 + 2*(3 m/s2)*d
4225 m2/s2 = (0 m/s)2 + (6 m/s2)*d
(4225 m 2/m2)/(6 m/s2) = d
d = 704 m