1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
4 years ago
12

A jet transport has a weight of 2.25 x 106 N and is at rest on the runway. The two rear wheels are 16.0 m behind the front wheel

, and the plane's center of gravity is 10.6 m behind the front wheel. Determine the normal force exerted by the ground on (a) the front wheel and on (b) each of the two rear wheels.

Physics
1 answer:
Rudik [331]4 years ago
6 0

Answer:

Explanation:

Given that,

Weight of jet

W = 2.25 × 10^6 N

It is at rest on the run way.

Two rear wheels are 16m behind the front wheel

Center of gravity of plane 10.6m behind the front wheel

A. Normal force entered on the ground by front wheel.

Taking moment about the the about the real wheel.

Check attachment for better understanding

So,

Clock wise moment = anti-clockwise moment

W × 5.4 = N × 16

2.25 × 10^6 × 5.4 = 16•N

N = 2.25 × 10^6 × 5.4 / 16

N = 7.594 × 10^5 N

B. Normal force on each of the rear two wheels.

Using the second principle of equilibrium body.

Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces

ΣFy = 0

Nr + Nr + N — W = 0

2•Nr = W—N

2•Nr = 2.25 × 10^6 — 7.594 × 10^5

2•Nr = 1.491 × 10^6

Nr = 1.491 × 10^6 / 2

Nr = 7.453 × 10^5 N

You might be interested in
Noble gases, such as argon and neon, are known for being extremely non-reactive. Neon and argon are non-reactive because they A.
Greeley [361]
B. have eight electrons in their outer shell
3 0
3 years ago
Read 2 more answers
You launch a cannonball at an angle of 35° and an initial velocity of 36 m/s (assume y = y₁=
velikii [3]

Answer:

Approximately 4.2\; {\rm s} (assuming that the projectile was launched at angle of 35^{\circ} above the horizon.)

Explanation:

Initial vertical component of velocity:

\begin{aligned}v_{y} &= v\, \sin(35^{\circ}) \\ &= (36\; {\rm m\cdot s^{-1}})\, (\sin(35^{\circ})) \\ &\approx 20.6\; {\rm m\cdot s^{-1}}\end{aligned}.

The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing y_{1} is the same as the altitude y_{0} at which this projectile was launched: y_{0} = y_{1}.

Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is 20.6\; {\rm m\cdot s^{-1}} (upwards,) the vertical velocity right before landing would be (-20.6\; {\rm m\cdot s^{-1}}) (downwards.) The change in vertical velocity is:

\begin{aligned}\Delta v_{y} &= (-20.6\; {\rm m\cdot s^{-1}}) - (20.6\; {\rm m\cdot s^{-1}}) \\ &= -41.2\; {\rm m\cdot s^{-1}}\end{aligned}.

Since there is no drag on this projectile, the vertical acceleration of this projectile would be g. In other words, a = g = -9.81\; {\rm m\cdot s^{-2}}.

Hence, the time it takes to achieve a (vertical) velocity change of \Delta v_{y} would be:

\begin{aligned} t &= \frac{\Delta v_{y}}{a_{y}} \\ &= \frac{-41.2\; {\rm m\cdot s^{-1}}}{-9.81\; {\rm m\cdot s^{-2}}} \\ &\approx 4.2\; {\rm s} \end{aligned}.

Hence, this projectile would be in the air for approximately 4.2\; {\rm s}.

8 0
2 years ago
Read 2 more answers
What will happen to the current if the voltage is reduced to one half? ​
stira [4]
We use v=IR and assuming the resistance doesn’t change we can also say that the voltage and current (I) are directly proportional which means the voltage also decreases by 1/2
8 0
3 years ago
__________ is the most common type of stretching.
Verizon [17]

Answer: static stretching

Explanation:

e.g rubberband

6 0
3 years ago
Read 2 more answers
You use a lever to lift a heavy tree branch you apply a force of 50 n and the lever lifts the branch
valentinak56 [21]

1.8 is the mechanical advantage of the lever.

<h3>Definition of mechanical advantage</h3>

The theoretical mechanical advantage of a system is the ratio of the force that performs the useful work to the force applied, assuming there is no friction in the system.

The advantage gained by the use of a mechanism in transmitting force specifically the ratio of the force that performs the useful work of a machine to the force that is applied to the machine.

Mechanical advantage is given by the ratio of the load lifted to the force applied to lift the load.

In this case, Mechanical advantage=L/E where L is the load and E is the effort applied.

Mechanical advantage= 90/50 =1.8

Question-you use a lever to lift a heavy tree branch. you apply a force of 50 n and the lever lifts the branch with a force of 90 n. what is the mechanical advantage of the lever?

To learn more about the Mechanical advantage visit the link

brainly.com/question/16617083

#SPJ4

5 0
2 years ago
Other questions:
  • What is the minimum number of data points an experiment should gather? A. one B. two C. three D. four
    7·1 answer
  • Ice sheet movement rates have varied from about 50 to 320 meters per year for the margins of the ice sheet advancing from the hu
    9·1 answer
  • A player kicks a football from ground level with a velocity of 26.2m/s at an angle of 34.2° above the horizontal. How far back f
    11·1 answer
  • The speed of a bus increases uniformly from 15 ms per second to 60 ms per second in 20 seconds. calculate 1. the average speed 2
    10·2 answers
  • Sam has been working to improve his muscular fitness. He jumps rope and trains with weights. What will most likely be the result
    12·2 answers
  • Alicia está a punto de perder su bus. En un desesperado intento, corre a una velocidad constante de 5 m/s. Cuando está a 15 m de
    5·1 answer
  • Define amplitude and frequency as they relate to a wave?
    15·1 answer
  • Complete the following statement: When a glass rod is rubbed with silk cloth, the rod becomes positively charged asa) negative c
    13·1 answer
  • Calculate the wavelength in centimeters of radar energy at a frequency of 10 GHz. What is the frequency in gigahertz of radar en
    15·1 answer
  • 1.si un automovil de 3000 kg se desplaza a 40 m/s su energía cinética es igual a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!