Answer:
<em>The balloon is 66.62 m high</em>
Explanation:
<u>Combined Motion
</u>
The problem has a combination of constant-speed motion and vertical launch. The hot-air balloon is rising at a constant speed of 14 m/s. When the camera is dropped, it initially has the same speed as the balloon (vo=14 m/s). The camera has an upward movement for some time until it runs out of speed. Then, it falls to the ground. The height of an object that was launched from an initial height yo and speed vo is
The values are
We must find the values of t such that the height of the camera is 0 (when it hits the ground)
Multiplying by 2
Clearing the coefficient of
Plugging in the given values, we reach to a second-degree equation
The equation has two roots, but we only keep the positive root
Once we know the time of flight of the camera, we use it to know the height of the balloon. The balloon has a constant speed vr and it already was 15 m high, thus the new height is
Answer:
his acceleration rate is -0.00186 m/s²
Explanation:
Given;
initial position of the car, x₀ = 100 miles = 160, 900 m ( 1 mile = 1609 m)
time of motion, t₀ = 60 minutes = 60 mins x 60 s = 3,600 s
final position of the car, x₁ = 150 miles = 241,350 m
time of motion, t₁ = 100 minutes = 100 mins x 60 s = 6,000 s
The initial velocity is calculated as;
u = 160, 900 m / 3,600 s
u = 44.694 m/s
The final velocity is calculated as;
v = 241,350 m / 6,000 s
v = 40.225 m/s
The acceleration is calculated as;
Therefore, his acceleration rate is -0.00186 m/s²
Answer:
Tidal heating
Explanation:
Tidal force is the ability of a massive body to produce tides on another body. The tidal force depends on the mass of the body that produces the tides and the distance between the two bodies.
Tidal forces can cause the destruction of a satellite that orbits a planet or a comet that is too close to the Sun or a planet. When the orbiting body crosses the "Roche boundary", the tidal forces along the body are more intense than the cohesion forces that hold the body together.
Tidal friction is the force between the Earth's oceans and ocean floors caused by the gravitational attraction of the Moon. The Earth tries to transport the waters of the oceans with it, while the Moon tries to keep them under it and on the opposite side of the Earth. In the long term, tidal friction causes the Earth's rotation speed to decrease, thus shortening the day. In turn, the Moon increases its angular momentum and gradually spirals away from Earth. Finally, when the day equals the orbital period of the Moon (which will be about 40 times the length of the current day), the process will cease. Subsequently, a new process will begin when the power to raise tides from the Sun takes angular momentum from the Earth-Moon system. The Moon will then spiral towards Earth until it is destroyed when it enters the "Roche boundary."
<u>Tidal heating
</u>
It is the warming caused by the tidal action on a planet or satellite. The most important example of tidal heating in the Solar System is the effect of Jupiter on its Io satellite, in which the tidal effects produce such high temperatures that the interior of the satellite melts, producing volcanism.
The correct option is C.
Hot springs and geysers are formed as a result of been heated up by heat from the interior of the earth. This type of heat is called geothermal heat. A hot spring refers to a spring that is produced as a result of geothermally heated water. Hot springs usually have very high temperature. Geysers is a form of hot spring and it refers to a pool of water that has seeped through a opening in the earth surface.