1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
3 years ago
12

g An object with mass 1kg travels at 3 m/s and collides with a stationary object whose mass is 0.5kg. The two objects stick toge

ther and continue to move. What is the velocity of the two objects together after collision
Physics
1 answer:
alex41 [277]3 years ago
5 0

Answer:

2

Explanation:

since the second object was in it stationary, it velocity is 0 m/s

You might be interested in
.<br> Why are meteorites moving?
lisov135 [29]

Answer:

Glow

Explanation:

Actually, it is the air in front of the meteoroid that heats up. The particle is traveling at speeds between 20 and 30 kilometers per second. It compresses the air in front, causing the air to get hot. The air is so hot it begins to glow — creating a meteor - the streak of light observed from Earth.

Hope this helped!

7 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
The half-life of caffeine is 5 hours. If you ingested a 30 oz Big Gulp, how many oz of caffeine is left after one half life? * Y
xeze [42]

Answer:

The amount of caffeine left after one half life of 5 hours is 15 oz.

Explanation:

Half life is the time taken for a radioactive substance to degenerate or decay to half of its original size.

The half life of caffeine is 5 hours. So ingesting a 30 oz, this would be reduced to half of its size after the first 5 hours.

So that:

After one half life of 5 hours, the value of caffeine that would be left is;

                                    \frac{30}{2} = 15 oz

The amount of caffeine left after one half life of 5 hours is 15 oz.

8 0
3 years ago
Which of the following is the BEST explanation for why oceans have two different types of currents?
ivanzaharov [21]

Answer:

sddww

Explanation:

szsswa

7 0
3 years ago
Two cannonballs are dropped from a second-floor physics lab at height h above the ground. Ball B has four times the mass of ball
denpristay [2]

Answer:

1:4

Explanation:

The formula for calculating kinetic energy is:

KE=\dfrac{1}{2}mv^2

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!

3 0
3 years ago
Other questions:
  • Which explains why more energy is released in nuclear reactions than in chemical reactions? Chemical reactions are always endoth
    15·2 answers
  • A 12 v automobile battery is connected to an electric starter motor. the current through the motor is 246
    9·1 answer
  • Please help i don't understand
    8·1 answer
  • Which statement best defines energy?
    10·1 answer
  • The kinetic energy of an object depends on what?
    13·2 answers
  • Determine whether the interference is constructive or destructive at each location indicated.
    15·1 answer
  • It is late and Carlos is sliding down a rope from his third-floor window to meet his friend Juan. As he slides down the rope fas
    6·1 answer
  • What happens to the the eardrum, a thin membrane at the end of the ear canal, when it is struck by a sound wave?
    14·1 answer
  • How do you find component velocities of parallel vectors?
    11·1 answer
  • Why are stars given an absolute magnitude?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!