Correction: The temperature change is from 20 °C to 30 °C.
Answer:
Cp = 1.0032 J.g⁻¹.°C⁻¹
Solution:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 5016 J
m = mass = 500 g
Cp = Specific Heat Capacity = ??
ΔT = Change in Temperature = 30 °C - 20 °C = 10 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 5016 J / (500 g × 10 °C)
Cp = 1.0032 J.g⁻¹.°C⁻¹
Answer:
It's B !
Explanation:
Formulas. The molecular formula for glucose is C6H12O6. This means that there are 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms bonded together to make one molecule of glucose.
Hope this helps!!
D. Not all mixtures are heterogeneous
Answer:
First, the microwaves transmit kinetic energy to the water molecules of the food, heating the water molecules. Only, those that are not very deep into the food.
Second, the hot water molecules transmit heat by conduction to the other parts of the food.
Explanation:
1) Microwaves are a form of electromagnetic radiation. The same as any wave, they carry energy.
2) The wave length of microwaves are in the range of 0.001 mm to 1 m (shorter than radio waves and longer than infrared)
3) The microwaves of an oven, used to heat food, have a wave length aroun 12 cm.
4) The microwaves transmit energy to the water molecules in the food, by increasing the kinetic energy of water molecules. As result, the water molecules get hotter. Microwaves only penetrate about 1 cm inside the food (a potato for example) and from that the heat is transferred by conduction to the inner parts of the food.
Beryllium has two inner shell electrons