Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂
The answer for the following problem is mentioned below.
- <u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules.</em></u>
Explanation:
Given:
mass of calcium phosphate (
) = 125.3 grams
We know;
molar mass of calcium phosphate (
) = (40×3) + 3 (31 +(4×16))
molar mass of calcium phosphate (
) = 120 + 3(95)
molar mass of calcium phosphate (
) = 120 +285 = 405 grams
<em>We also know;</em>
No of molecules at STP conditions(
) = 6.023 × 10^23 molecules
To solve:
no of molecules present in the sample(N)
We know;
N÷
=
N =(405×6.023 × 10^23) ÷ 125.3
N = 19.3 × 10^23 molecules
<u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules</em></u>
Answer:
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Keq= [Mg3P2]/[Mg]^3 [P]^2
Explanation:
The equation for the formation of magnesium phosphide from its elements is;
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Hence we can see that three moles of magnesium atoms combines with two moles of phosphorus atoms to yield one mole of magnesium phosphide. The equation written above is the balanced chemical reaction equation for the formation of the magnesium phosphide.
The equilibrium expression for the reaction K(eq) will be given by;
Keq= [Mg3P2]/[Mg]^3 [P]^2
Answer:
1 tablet
Explanation:
Assuming that gm stands for gram:
Put everything in one unit, 0.3 g = 300 mg.
And given that each tablet is 300 mg:
mass/amount = 300mg / 1 tablet
300mg / X amount = 300mg / 1 tablet
(300mg/300mg) tablet = X = 1 tablet
So it is 1 tablet you need.
Answer:
P₂ ≅ 100 atm (1 sig. fig. based on the given value of P₁ = 90 atm)
Explanation:
Given:
P₁ = 90 atm P₂ = ?
V₁ = 18 Liters(L) L₂ = 12 Liters(L)
=> decrease volume => increase pressure
=> volume ratio that will increase 90 atm is (18L/12L)
T₁ = 272 Kelvin(K) T₂ = 274 Kelvin(K)
=> increase temperature => increase pressure
=> temperature ratio that will increase 90 atm is (274K/272K)
n₁ = moles = constant n₂ = n₁ = constant
P₂ = 90 atm x (18L/12L) x (274K/272K) = 135.9926471 atm (calculator)
By rule of sig. figs., the final answer should be rounded to an accuracy equal to the 'measured' data value having the least number of sig. figs. This means P₂ ≅ 100 atm based on the given value of P₁ = 90 atm.