<u>169 Kcalories</u> are provided by a portion of food that has 25 grams of carbs, 6 grams of protein, and 5 grams of fat.
Kcalories mean kilo-calories. Basically, kilo-calorie or kcal refers to 1,000 calories. To get the Kcalories of food, you have to add the kcal of carbohydrates, protein, and fat.
Get the product by multiplying the number of grams of carbohydrate, protein, and fat by 4,4, and 9, respectively. So if you want to get the energy or Kcal available from a meal, you must then combine the outcomes.
Simply put it, take note of the following conversions:
- 1 gram of carbohydrate is 4kcal
- 1 gram of protein is also 4kcal
- Though, 1 gram of fat is 9kcal
So here's how to compute the Kcalories of food that contains 25g carbs, 6g protein, and 5g fat.
1. 25g x 4kcal/g = 100kcal
2. 6g x 4kcal/g = 24kcal
3. 5g x 9kcal/g = 45kcal
4. 100kcal + 24kcal + 45kcal = 169kcal!
Therefore, the food contains 169 kilo-calories!
You might be interested in nutrient density of an orange juice per kcalorie. Look here: brainly.com/question/26495283
#SPJ4
An input device sends information to a computer system for processing, and an output device reproduces or displays the results of that processing. Input devices only allow for input of data to a computer and output devices only receive the output of data from another device.
Hope it helps!
Answer:
Because 'distance per second' is a velocity, not an acceleration.
Explanation:
Because 'distance per second' is a velocity, not an acceleration. For example, at 1 m/s an object is travelling a distance of 1 metre every second. But a rate of acceleration is a steady increase in velocity. So at 1 m/s^2, an object's velocity is increasing by 1 m/s every second.
Answer:
D) diffraction
Explanation:
Corona is an optical phenomenon produced by the diffraction of sunlight or moonlight, as light moves through water droplets in the atmosphere.
This phenomenon produces one or more diffuse concentric rings of light around the Sun or Moon, usually seen as colored circles.
Therefore, the explanation for these phenomena of colored concentric circles, sometimes seen with the Sun or the Moon involves diffraction.
For this problem, we use the Coulomb's law written in equation as:
F = kQ₁Q₂/d²
where
F is the electrical force
k is a constant equal to 9×10⁹
Q₁ and Q₂ are the charge of the two objects
d is the distance between the two objects
Substituting the values:
F = (9×10⁹)(-22×10⁻⁹ C)(-22×10⁻⁹ C)/(0.10 m)²
F = 0.0004356 N