Explanation:
It is given that,
Mass of concrete pilling, m = 50 kg
Diameter of wire, d = 1 mm
Radius of wire, r = 0.0005 m
Length of wire, L = 11.2
Young modulus of steel, 
The young modulus of a wire is given by :





So, the wire will stretch 0.034 meters. Hence, this is the required solution.
When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz (1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer. HOPE THIS HELPED
Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees
Answer:

Explanation:
Hello,
In this case, considering that the acceleration is computed as follows:

Whereas the final velocity is 28.82 m/s, the initial one is 0 m/s and the time is 4.2 s. Thus, the acceleration turns out:

Regards.