Answer:
a) 3.9 x 10⁻⁵ kg
Explanation:
The amount of mass required to produce the energy can be given by Einstein's formula:
where,
m = mass required = ?
E = Energy produced = 3.5 x 10¹² J
c = speed of light = 3 x 10⁸ m/s
Therefore,
Hence, the correct option is:
<u>a) 3.9 x 10⁻⁵ kg</u>
Answer:
True
Explanation:
The image produced a convex mirror is always virtual irrespective of location. The size of the image is always smaller than the object. In a plane mirror the distance of the object and the distance of the image is same. But in a convex the image distance is always less than the object distance.
So, this statement is true.
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
I believe the correct answer from the choices listed above is option C. The instrument that is <span>best suited for measuring the dimensions of a shoebox would be a ruler. A triple-beam balance is for measuring mass. A volumetric flask is for volume. A caliper is measuring lengths of small objects.</span>
Answer:
<u>B</u>
Explanation:
Planets have different year lengths because it depends how far they revolve from a celestial body. Each planet has its own orbital period. Planets closer to the star will have a lower orbital period compared to the ones that lie far away from it.