1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
2 years ago
7

An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate is found to be 1% pe

r hour at 800°C and 0.055% per hour at 700°C.
(a) Calculate the activation energy for creep in this temperature range.
(b) Estimate the creep rate to be expected at the service temperature of 500°C.
Engineering
1 answer:
LenaWriter [7]2 years ago
4 0

Answer:

a) Q = 251.758 kJ/mol

b) creep rate is    = 1.751 \times 10^{-5} \% per hr

Explanation:

we know Arrhenius expression is given as

\dot \epsilon =Ce^{\frac{-Q}{RT}

where

Q is activation energy

C is pre- exponential constant

At 700 degree C creep rate is\dot \epsilon = 5.5\times 10^{-2}% per hr

At 800 degree C  creep rate is\dot \epsilon = 1% per hr

activation energy for creep is \frac{\epsilon_{800}}{\epsilon_{700}} = = \frac{C\times e^{\frac{-Q}{R(800+273)}}}{C\times e^{\frac{-Q}{R(700+273)}}}

\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}

\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}]

solving for Q we get

Q = 251.758 kJ/mol

b) creep rate at 500 degree C

we know

C = \epsilon e^{\frac{Q}{RT}}

    =- 1\% e{\frac{251758}{8.314(500+273}} = 1.804 \times 10^{12} \% per hr

\epsilon_{500} = C e^{\frac{Q}{RT}}

                         = 1.804 \times 10^{12}  e{\frac{251758}{8.314(500+273}}

                         = 1.751 \times 10^{-5} \% per hr

You might be interested in
How can any student outside apply for studying engineering at Cambridge University​
telo118 [61]
Admission to the Engineering course at Cambridge is highly competitive, both in terms of the numbers and quality of applicants. In considering applicants, Colleges look for evidence both of academic ability and of motivation towards Engineering. There are no absolute standards required of A Level achievement, but it should be noted that the average entrant to the Department has three A* grades. You need to get top marks in Maths and Physics.All Colleges strongly prefer applicants for Engineering to be taking a third subject that is relevant to Engineering.
Hope that helps and good luck if you are applying. Can you please mark this as brainliest and press the thank you button and if you have any further questions please let me know!!
3 0
2 years ago
A coil with an average diameter of 5 inch will have an area of ""blank"" square meters
nadezda [96]

Answer:

19.64 square inches

Explanation:

Area will be (¶d^2)/4

= (3.142 x 5^2)/4

= 19.64 square inches

8 0
3 years ago
Select the characteristics of an ideal operational amplifier.
SpyIntel [72]

Answer:

Numbers 4, 6, & 7 are correct

Explanation:

4- this allows the op amp to have zero voltage so that maximum voltage is transferred to output load.

6- this ensures that op amp doesn't cause loading in the original circuit, high input impedance would not deter the circuit from pulling current from it.

7- high difference between upper and lower frequencies.

3 0
3 years ago
Reagen pembatas adalah
kow [346]
I don’t know what you mean by that
5 0
3 years ago
An inventor claims to have devised a cyclical power engine that operates with a fuel whose temperature is 750 °C and radiates wa
Phantasy [73]

Answer:

Yes

Explanation:

Given Data

Temprature of source=750°c=1023k

Temprature of sink =0°c=273k

Work produced=3.3KW

Heat Rejected=4.4KW

Efficiency of heat engine(η)=\frac{Work produced}{Heat supplied}

and

Heat Supplied {\left (Q_s\right)}=Work Produced(W)+Heat rejected\left ( Q_r \right )

{Q_s}=3.3+4.4=7.7KW

η=\frac{3.3}{7.7}

η=42.85%

Also the maximum efficiency of a heat engine operating between two different Tempratures i.e. Source & Sink

η=1-\frac{T_ {sink}}{T_ {source}}

η=1-\frac{273}{1023}

η=73.31%

Therefore our Engine Efficiency is less than the maximum efficiency hence the given claim is valid.

5 0
3 years ago
Other questions:
  • 3. Air at 1 atm and 20 0 C flows tangentially on both sides of a smooth flat plate of width W=10 ft and length L=10 ft in the di
    8·1 answer
  • 1. How many types of pumps are present?​
    14·1 answer
  • A market research survey has 15 questions and will be sent to 500 people. What is the total cost to conduct survey if it has a $
    12·1 answer
  • The themes around which social sciences texts are organized boost understanding by
    11·1 answer
  • All of the following are categories for clutch covers except
    11·1 answer
  • What is the difference between the pressure head at the end of a 150m long pipe of diameter 1m coming from the bottom of a reser
    7·1 answer
  • Please choose a specific type of stability or control surface (e.g., a canard) and explain how it is used, what it is used for,
    5·1 answer
  • Select the correct answer.
    12·1 answer
  • The majority of adults now own smartphones or tablets, and most of them say they use them in part to get the news. From 2004 to
    7·1 answer
  • Define waves as it applies to electromagnetic fields
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!