Answer:
The minimum volume requirement for the granite stones is 1543.64 cm³
Explanation:
1 granite stone weighs 10 denarium
100 granted stones will weigh 1000 denarium
1 denarium = 3.396g
1000 denarium = 3396g.
But we're told that 20% of material is lost during the making of these stones.
This means the mass calculated represents 80% of the original mass requirement, m.
80% of m = 3396
m = 3396/0.8 = 4425 g
This mass represents the minimum mass requirement for making the stones.
To now obtain the corresponding minimum volume requirement
Density = mass/volume
Volume = mass/density = 4425/2.75 = 1543.64 cm³
Hope this helps!!!
Answer:
Explanation:
Attached is the solution to the question
1. Define <em>Viscosity</em>
In physics, <em>Viscosity</em> refers to the level of resistance of a fluid to flow due to internal friction, in other words, viscosity is the result of the magnitude of internal friction in a fluid, as measured by the force per unit area resisting uniform flow. For example, the honey is a fluid with high viscosity while the water has low viscosity.
What are the main differences between viscous and inviscid flows?
Viscous flows are flows that has a thick, sticky consistency between solid and liquid, contain and conduct heat, does not have a rest frame mass density and whose motion at a fixed point always remains constant. Inviscid flows, on the other hand, are flows characterized for having zero viscosity (it does not have a thick, sticky consistency), for not containing or conducting heat, for the lack of steady flow and for having a rest frame mass density
Furthermore, viscous flows are much more common than inviscid flows, while this latter is often considered an idealized model since helium is the only fluid that can become inviscid.
Answer:
repeated?
Explanation:
not really sure what type of answer choices you have
Answer: A capacitor connected across the output allows the AC signal to pass through it and blocks the DC signal, thus acting as a high pass filter. The output across the capacitor is thus an unregulated filtered DC signal. This output can be used to drive electrical components like relays, motors, etc.
Explanation: