1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
12

A horizontal spring-mass system has low friction, spring stiffness 165 N/m, and mass 0.6 kg. The system is released with an init

ial compression of the spring of 7 cm and an initial speed of the mass of 3 m/s.
(a) What is the maximum stretch during the motion?
(b) What is the maximum speed during the motion?
Physics
1 answer:
AURORKA [14]3 years ago
6 0

a) 19.4 cm

b) 3.2 m/s

Explanation:

a)

A horizontal spring-mass system has a motion called simple harmonic motion, in which the mass oscillates following a periodic function (sine or cosine) around an equilibrium position.

As the system oscillates back and forth, its total mechanical energy (sum of elastic potential energy and kinetic energy) will remain conserved (since we consider friction negligible). The elastic potential energy at any point is given by:

U=\frac{1}{2}kx^2

where

k is the spring constant

x is the displacement of the system

While the kinetic energy at any point is

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

So the total mechanical energy of the system is

E=K+U=\frac{1}{2}mv^2+\frac{1}{2}kx^2

For this system, when it is initially released,

m = 0.6 kg

k = 165 N/m

x = 7 cm = 0.07 m

v = 3 m/s

So the total energy is

E=\frac{1}{2}(0.6)(3)^2+\frac{1}{2}(165)(0.07)^2=3.1 J

Since friction is negligible, this total energy remains constant. Therefore, when the system reaches its maximum stretch during the motion, the kinetic energy will be zero and all the mechanical energy will be elastic potential energy; so we will have:

E=U=\frac{1}{2}kx_{max}^2

where x_{max} is the maximum stretch. Solving for x_{max},

x_{max}=\sqrt{\frac{2E}{k}}=\sqrt{\frac{2(3.1)}{165}}=0.194 m

So, 19.4 cm.

b)

The maximum speed in a spring-mass oscillating system is reached when the kinetic energy is maximum, and therefore, since the total energy is conserved, when the elastic potential energy is zero:

U=0

which means when the displacement is zero:

x = 0

So, when the system is transiting through the equilibrium position.

Therefore, the total mechanical energy is equal to the maximum kinetic energy:

E=K=\frac{1}{2}mv_{max}^2

where

m is the mass

v_{max} is the maximum speed

Here we have:

E = 3.1 J

m = 0.6 kg

Therefore, solving for the maximum speed,

v_{max}=\sqrt{\frac{2E}{m}}=\sqrt{\frac{2(3.1)}{0.6}}=3.2 m/s

You might be interested in
Which statement best explains the movement of electric current from the clouds to the ground during a lightning storm? .
olga2289 [7]
"The <span>ground is positively charged and the clouds are negatively charged " is the statement among the statements given in the question that </span><span>best explains the movement of electric current from the clouds to the ground during a lightning storm. The correct option among all the options that are given in the question is the third option or option "C". </span>
3 0
2 years ago
Read 2 more answers
A ball is tossed with enough speed straight up so that it is in the air several seconds. (a) What is the velocity of the ball wh
irina1246 [14]

(a) Zero

When the ball reaches its highest point, the direction of motion of the ball reverses (from upward to downward). This means that the velocity is changing sign: this also means that at that moment, the velocity must be zero.

This can be also understood in terms of conservation of energy: when the ball is tossed up, initially it has kinetic energy

K=\frac{1}{2}mv^2

where m is the ball's mass and v is the initial speed. As it goes up, this kinetic energy is converted into potential energy, and when the ball reaches the highest point, all the kinetic energy has been converted into potential energy:

U=mgh

where g is the gravitational acceleration and h is the height of the ball at highest point. At that point, therefore, the potential energy is maximum, while the kinetic energy is zero, and so the velocity is also zero.

(b) 9.8 m/s upward

We can find the velocity of the ball 1 s before reaching its highest point by using the equation:

a=\frac{v-u}{t}

where

a = g = -9.8 m/s^2 is the acceleration due to gravity, which is negative since it points downward

v = 0 is the final velocity (at the highest point)

u is the initial velocity

t = 1 s is the time interval

Solving for u, we find

u=v-at = 0 -(-9.8 m/s^2)(1 s)= +9.8 m/s

and the positive sign means it points upward.

(c) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where

v = 0 is the final velocity (at the highest point)

u = 9.8 m/s is the initial velocity

Substituting, we find

\Delta v = 0 - (+9.8 m/s)=-9.8 m/s

(d) 9.8 m/s downward

We can find the velocity of the ball 1 s after reaching its highest point by using again the equation:

a=\frac{v-u}{t}

where this time we have

a = g = -9.8 m/s^2 is the acceleration due to gravity, still negative

v  is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

t = 1 s is the time interval

Solving for v, we find

v = u+at = 0 +(-9.8 m/s^2)(1 s)= -9.8 m/s

and the negative sign means it points downward.

(e) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where here we have

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

Substituting, we find

\Delta v = -9.8 m/s - 0=-9.8 m/s

(f) -19.6 m/s

The change in velocity during the overall 2-s interval is given by

\Delta v = v -u

where in this case we have:

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = +9.8 m/s is the initial velocity (1 s before reaching the highest point)

Substituting, we find

\Delta v = -9.8 m/s - (+9.8 m/s)=-19.6 m/s

(g) -9.8 m/s^2

There is always one force acting on the ball during the motion: the force of gravity, which is given by

F=mg

where

m is the mass of the ball

g = -9.8 m/s^2 is the acceleration due to gravity

According to Newton's second law, the resultant of the forces acting on the body is equal to the product of mass and acceleration (a), so

mg = ma

which means that the acceleration is

a= g = -9.8 m/s^2

and the negative sign means it points downward.

7 0
3 years ago
What is one difference between using a solar cell for electricity and using a windmill?
wlad13 [49]

Answer:

Solar cell generates DC

Windmill generates AC

Explanation:

Solar cell generates DC from the panel, to use this DC for electricity it has to be passed to an inverter which convert DC to AC.

Windmill generates AC from the wind blades. This type of energy can be used directly with household appliances using AC, or passed to a rectifier to convert it to DC.

8 0
3 years ago
The gravitational attraction between two objects will what is the object move further apart
finlep [7]
The farther apart the two objects, the weaker the gravitational attraction between them.
3 0
3 years ago
Consider a 7 m stretched string that is clamped at both ends. What is the longest wavelength standing wave that it can support (
user100 [1]

A vibrating stretched string has nodes or fixed points at each end. The string will vibrate in its fundamental frequency with just one anti node in the middle - this gives half a wave.

l=\frac{\lambda }{2}

Rearranging for the wavelength

\lambda=2l

\lambda =2(7)

\lambda = 14m

Therefore the longest wavelength standing wave that it can support is 14m

7 0
3 years ago
Other questions:
  • In 1986, the first flight around the globe without a single refueling was completed. The aircraft’s average speed was 186 km/h.
    8·1 answer
  • Two speakers create identical
    6·1 answer
  • A 100 N box sits on a 30 degree incline. If the static coefficient of friction is 0.1, what is the magnitude of the static frict
    6·1 answer
  • Suppose you want to design an air bag system that can protect the driver at a speed 100 km/h (60 mph) if the car hits a brick wa
    7·1 answer
  • * THE ANSWER IS D * Find the location of fluorine (F) on the periodic table. What type of ion will fluorine form?
    8·2 answers
  • Pplzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz helppppp
    7·2 answers
  • Describe the relationship between a compass and a magnet. Use C.E.R. Your C.E.R should have a one-sentence claim, three pieces o
    5·1 answer
  • What is the velocity of a car that went a distance of 400ft in 25 seconds ​
    13·2 answers
  • The _________ is the difference between two times
    13·1 answer
  • a crude approximation of voice production is to consider the breathing passages and mouth to be a resonating tube closed at one
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!