When the velocity is increasing the acceleration increases too
Answer:
No
Explanation:
The equation of state for ideal gases tells that:

where
p is the gas pressure
V is the gas volume
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature
In this problem, we have a fixed mass of gas. This means that the number of moles of the gas,
, does not change; also, the volume V remains the same, and R is a constant, this means that

So, as the pressure increases, the temperature increases.
However, here we want to understand what happens to the average distance between the molecules.
We have said previously that the number of moles n does not change: and therefore, the total number of molecules in has does not change either.
If we consider one dimension only, we can say that the average distance between the molecules is

where L is the length of the container and N the number of molecules. Since the volume of the container here does not change, L does not change, and since N is constant, this means that the average distance between the molecules remains the same.
Answer:
The answer is the top choice. (-1)
Explanation:
We are dealing with a negative number here, so we should start at negative five on the number line. From here we see that we are subtracting a negative number from it, which means we are really adding. (Review your rules for negative signs if this doesn't make sense.) So we add 4 to -5, and we get -1. Thus, we get the top choice.
5 N to the right
There’s a force of 6 N pulling to the right (the positive direction) and 1 N pulling left (the negative direction).
Net force= 6 N - 1 N = 5 N to the right
Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²