Answer:
a.) W/3, b.)2g/3 c.) (4gh/3)^0.5
Explanation:
First we have to find tension in terms of torque. To do that we have to find the moment of inertia of a rigid cylinder. From Wikipedia I get:
![I = 0.5mr^2](https://tex.z-dn.net/?f=I%20%3D%200.5mr%5E2)
We also know the equation for torque. Let T be the tension, r be the distance, I is the moment of inertia and alpha is angular acceleration (ignore theta because it is perpendicular)
![torque = I*\alpha = T*r](https://tex.z-dn.net/?f=torque%20%3D%20I%2A%5Calpha%20%3D%20T%2Ar)
We can then substitute a/r for α
Therefore we get:
![I*\frac{a}{r}=T*r](https://tex.z-dn.net/?f=I%2A%5Cfrac%7Ba%7D%7Br%7D%3DT%2Ar)
Isolating T and substitute the moment of inertia in for I we get
![T = [0.5mr^2]a/r^2= 0.5ma](https://tex.z-dn.net/?f=T%20%3D%20%5B0.5mr%5E2%5Da%2Fr%5E2%3D%200.5ma)
There are two known forces acting on the cylinder, gravity and tension. The sum of these two forces gives us mass times acceleration (Newton's second law)
![F = ma => mg - 0.5ma = ma\\g=\frac{3}{2}a\\a = \frac{2}{3}g](https://tex.z-dn.net/?f=F%20%3D%20ma%20%3D%3E%20mg%20-%200.5ma%20%3D%20ma%5C%5Cg%3D%5Cfrac%7B3%7D%7B2%7Da%5C%5Ca%20%3D%20%5Cfrac%7B2%7D%7B3%7Dg)
This allows us to plug acceleration back into Newton's Second Law:
![mg - T = m[\frac{2}{3}g]\\ T = \frac{1}{3} mg = \frac{1}{3}w](https://tex.z-dn.net/?f=mg%20-%20T%20%3D%20m%5B%5Cfrac%7B2%7D%7B3%7Dg%5D%5C%5C%20T%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20mg%20%3D%20%5Cfrac%7B1%7D%7B3%7Dw)
w = the weight
For part b, we solved in part a:
![a = \frac{2}{3}g](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B2%7D%7B3%7Dg)
For part c, we use the conservation of energy. We know that the sum of energy in the system is zero.
![mgh + \frac{1}{2} mv^2 + \frac{1}{2}I(omega)^2 = 0\\(omega) = (\frac{v}{r})^2\\ I = \frac{1}{2} mr^2\\-gh +\frac{1}{2} v^2+\frac{1}{4} v^2 = 0\\gh = \frac{3}{4} v^2\\v = \sqrt{ \frac{4}{3}gh }](https://tex.z-dn.net/?f=mgh%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7DI%28omega%29%5E2%20%3D%200%5C%5C%28omega%29%20%3D%20%28%5Cfrac%7Bv%7D%7Br%7D%29%5E2%5C%5C%20I%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mr%5E2%5C%5C-gh%20%2B%5Cfrac%7B1%7D%7B2%7D%20v%5E2%2B%5Cfrac%7B1%7D%7B4%7D%20v%5E2%20%3D%200%5C%5Cgh%20%3D%20%5Cfrac%7B3%7D%7B4%7D%20v%5E2%5C%5Cv%20%3D%20%5Csqrt%7B%20%5Cfrac%7B4%7D%7B3%7Dgh%20%7D)