Answer:
<em>The person needs to apply 25 N to balance the seesaw</em>
Explanation:
<u>Moment</u>
The moment of a force is a measure of its tendency to cause a body to rotate about a specific point or axis.
The moment M of a force F located at a distance x from the axis of rotation is calculated as follows:
M = F.x
The image shows a moment of M=100 N.m is needed to be applied to balance the seesaw. It can also be noted that the distance to the pivot is x=4 m
To calculate the force needed to balance the seesaw, we solve for F:


F = 25 N
The person needs to apply 25 N to balance the seesaw
Answer:
12.5J
Explanation:
Given parameters:
Mass of bucket = 1.7kg
Height = 75cm = 0.75m
Unknown;
Work done on the bucket by the person = ?
Solution:
To solve this problem, we use the work done equation;
Work done = force x distance = mgh
m is the mass
g is the acceleration due to gravity
h is the height
Now, insert parameters and solve ;
Work done = 1.7 x 9.8 x 0.75 = 12.5J
Answer:
A stellar collision.
Explanation:
A stellar collision is the coming together of two stars caused by stellar dynamics within a star cluster, or by the orbital decay of a binary star due to stellar mass loss or gravitational radiation, or by other mechanisms not yet well understood.
Answer:
15.8 V
Explanation:
The relationship between capacitance and potential difference across a capacitor is:

where
q is the charge stored on the capacitor
C is the capacitance
V is the potential difference
Here we call C and V the initial capacitance and potential difference across the capacitor, so that the initial charge stored is q.
Later, a dielectric material is inserted between the two plates, so the capacitance changes according to

where k is the dielectric constant of the material. As a result, the potential difference will change (V'). Since the charge stored by the capacitor remains constant,

So we can combine the two equations:

and since we have
V = 71.0 V
k = 4.50
We find the new potential difference:
