1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
3 years ago
6

A certain material has a high melting point and is malleable and shiny. It is most likely a _____.

Physics
2 answers:
Lemur [1.5K]3 years ago
6 0
I believe the answer is "metal."
Sonbull [250]3 years ago
4 0
The answer is metal
You might be interested in
If a runner has a speed of 8.66m/s and runs for 46.2s what distance is covered? tv = d
kati45 [8]

Answer:

\text{Using the formula: }v=\frac{d}{t}\\\therefore vt=d\\\text{Plug and chug:}46.2(8.66)=400.092\text{ metres}

6 0
2 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
Please help me with the equations for this! Three uniform spheres are fixed at the positions shown in the diagram. ( there is a
lora16 [44]
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!

<span>PE=−[G<span>M1</span><span>M2</span>]÷R

</span><span> Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>
7 0
3 years ago
A guitarist finds that the pitch of one of her strings is slightly flat—the frequency is a bit too low. Should she increase or d
Yuri [45]

Answer:

The guitarist should increase the tension of the string.

Explanation:

The frequency of a vibrating string is determined by fn=(n/(2L))√T/μ. So if the tension in the string increased, the rate at which it vibrates (the frequency) will also increase.

Therefore it is advisable that she increase the tension of the string.

I hope it helps, please give brainliest if it does

6 0
3 years ago
Which statement best describes metallic bonding
horrorfan [7]

Answer:

It's a type of chemical bonding that rises from the electrostatic attractive force between conduction electrons and positively charged metal bars. It can also be described as the sharing of free electrons among a structure of positively charged ions

4 0
2 years ago
Other questions:
  • A block of mass m=0.4 kg starts from rest and slides down a frictionless ramp, before hitting a spring of spring constant k = 30
    6·1 answer
  • A 1.50-m-long rope is stretched between two supports with a tension that makes the speed of transverse waves 48.0 m/s. What are
    15·1 answer
  • Suppose there is a uniform magnetic field, B, pointing into the page (so your index finger will point into the page). If the vel
    10·1 answer
  • An electromagnetic wave is traveling straight down toward the center of the Earth. At a certain moment in time the electric fiel
    10·1 answer
  • Where do tadpoles live? a. on land c. both on land and water b. in water d. none of the above
    15·2 answers
  • What is a type of force that results from turning a corner on a bicycle? ​
    11·2 answers
  • Select the correct answer.
    6·1 answer
  • A 36.3 kg cart has a velocity of 3 m/s. How much kinetic energy does the object have?
    5·1 answer
  • Please help i would really appreciate it
    8·2 answers
  • A 2.47 kg book is dropped from a height of +2.6 m.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!