Answer:
Distance = 345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]
Explanation:
We can solve this problem by using Newton's universal gravitation law.
In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m
![r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]](https://tex.z-dn.net/?f=r_%7Be%7D%20%3D%20distance%20earth%20to%20the%20astronaut%20%5Bm%5D.%5C%5Cr_%7Bm%7D%20%3D%20distance%20moon%20to%20the%20astronaut%20%5Bm%5D%5C%5Cr_%7Bt%7D%20%3D%20total%20distance%20%3D%203.84%2A10%5E8%5Bm%5D)
Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.
Mathematically this equals:

![F_{m} =G*\frac{m_{m}*m_{a} }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]](https://tex.z-dn.net/?f=F_%7Bm%7D%20%3DG%2A%5Cfrac%7Bm_%7Bm%7D%2Am_%7Ba%7D%20%20%7D%7Br_%7Bm%7D%20%5E%7B2%7D%20%7D%20%5C%5Cwhere%3A%5C%5CG%20%3D%20gravity%20constant%20%3D%206.67%2A10%5E%7B-11%7D%5B%5Cfrac%7BN%2Am%5E%7B2%7D%20%7D%7Bkg%5E%7B2%7D%20%7D%20%5D%20%5C%5Cm_%7Be%7D%3D%20earth%27s%20mass%20%3D%205.98%2A10%5E%7B24%7D%5Bkg%5D%5C%5C%20m_%7Ba%7D%3D%20astronaut%20mass%20%3D%20100%5Bkg%5D%5C%5Cm_%7Bm%7D%3D%20moon%27s%20mass%20%3D%207.36%2A10%5E%7B22%7D%5Bkg%5D)
When we match these equations the masses cancel out as the universal gravitational constant

To solve this equation we have to replace the first equation of related with the distances.

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.
![r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c } }{2*a}\\ where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) } }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]](https://tex.z-dn.net/?f=r_%7Bm1%2C2%7D%3D%5Cfrac%7B-b%2B-%20%5Csqrt%7Bb%5E%7B2%7D-4%2Aa%2Ac%20%7D%20%20%7D%7B2%2Aa%7D%5C%5C%20%20where%3A%5C%5Ca%3D80.25%5C%5Cb%3D768%2A10%5E%7B6%7D%20%5C%5Cc%20%3D%20-1.47%2A10%5E%7B17%7D%20%5C%5Creplacing%3A%5C%5Cr_%7Bm1%2C2%7D%3D%5Cfrac%7B-768%2A10%5E%7B6%7D%2B-%20%5Csqrt%7B%28768%2A10%5E%7B6%7D%29%5E%7B2%7D-4%2A80.25%2A%28-1.47%2A10%5E%7B17%7D%29%20%7D%20%20%7D%7B2%2A80.25%7D%5C%5C%5C%5Cr_%7Bm1%7D%3D%2038280860.6%5Bm%5D%20%5C%5Cr_%7Bm2%7D%3D-2.97%2A10%5E%7B17%7D%20%5Bm%5D)
We work with positive value
rm = 38280860.6[m] = 38280.86[km]
<u>Second part</u>
<u />
The distance between the Earth and this point is calculated as follows:
re = 3.84 108 - 38280860.6 = 345719139.4[m]
Now the acceleration can be found as follows:
![a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2} } \\a=3.33*10^{19} [m/s^2]](https://tex.z-dn.net/?f=a%20%3D%20G%2A%5Cfrac%7Bm_%7Be%7D%20%7D%7Br_%7Be%7D%20%5E%7B2%7D%20%7D%20%5C%5Ca%20%3D%206.67%2A10%5E%7B11%7D%20%2A%5Cfrac%7B5.98%2A10%5E%7B24%7D%20%7D%7B%28345.72%2A10%5E%7B6%7D%29%5E%7B2%7D%20%20%7D%20%5C%5Ca%3D3.33%2A10%5E%7B19%7D%20%5Bm%2Fs%5E2%5D)
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!
<span>PE=−[G<span>M1</span><span>M2</span>]÷R
</span><span>
Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>
Answer:
The guitarist should increase the tension of the string.
Explanation:
The frequency of a vibrating string is determined by fn=(n/(2L))√T/μ. So if the tension in the string increased, the rate at which it vibrates (the frequency) will also increase.
Therefore it is advisable that she increase the tension of the string.
I hope it helps, please give brainliest if it does
Answer:
It's a type of chemical bonding that rises from the electrostatic attractive force between conduction electrons and positively charged metal bars. It can also be described as the sharing of free electrons among a structure of positively charged ions