Answer
B. F=ma
Explanation
The Newton's laws of motion tries to explain the how bodies behave and the energy changes when theys are in motion. For the 3 of them to hold, the bodies must be moving in a straight line and with constant velocity.
The second one states that, "the change of momentum of a moving body is directly proportional to the force producing it and it takes place to the direction of force."
From the choices given, the appropriate answer is B. F=ma
<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then:
F = G(Mm / (4(pi)*r^2))
The above expression gives the force that you feel on the earth's surface, as it is today!
Let us now double the mass of the earth and decrease its diameter to half its original size.
This is the same as replacing M with 2M and r with r/2.
Now the gravitational force (F' ) on the new earth's surface is given by:
F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F
So:
F' = 8F
This implies that the force that you would feel pulling you down (your weight) would increase by 800%!
You would be 8 times heavier on this "new" earth!</span>
The correct answer is 1.25 because it is 1/2 of 1 1/2 and that is 1.25.
Do you have any answer choices?
Answer: 9.0 atm
Explanation:
To calculate the new pressure, we use the equation given by Boyle's law. This law states that pressure is directly proportional to the volume of the gas at constant temperature.
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Thus new pressure of 150 ml of a gas that is compressed to 50 ml is 9.0 atm